Wilson WH, O'Connor OA, Czuczman MS et al.Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 11:1149-1159

National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
The Lancet Oncology (Impact Factor: 24.69). 12/2010; 11(12):1149-59. DOI: 10.1016/S1470-2045(10)70261-8
Source: PubMed

ABSTRACT Proteins of the BCL-2 family regulate clonal selection and survival of lymphocytes, and are frequently overexpressed in lymphomas. Navitoclax is a targeted high-affinity small molecule that inhibits the anti-apoptotic activity of BCL-2 and BCL-XL. We aimed to assess the safety and antitumour activity of navitoclax in patients with lymphoid tumours, and establish the drug's pharmacokinetic and pharmacodynamic profiles.
In this phase 1 dose-escalation study, patients (aged ≥18 years) with relapsed or refractory lymphoid malignancies were enrolled and treated at seven sites in the USA between November, 2006, and November, 2009. A modified Fibonacci 3+3 design was used to assign patients to receive oral navitoclax once daily by one of two dosing schedules: intermittently for the first 14 days of a 21-day cycle (14/21) at doses of 10, 20, 40, 80, 110, 160, 225, 315, or 440 mg/day; or continuously for 21 days of a 21-day cycle (21/21) at doses of 200, 275, 325, or 425 mg/day. Study endpoints were safety, maximum tolerated dose, pharmacokinetic profile, pharmacodynamic effects on platelets and T cells, and antitumour activity. This trial is registered with, number NCT00406809.
55 patients were enrolled (median age 59 years, IQR 51-67), 38 to receive the 14/21 dosing schedule, and 17 to receive the 21/21 dosing schedule. Common toxic effects included grade 1 or 2 anaemia (41 patients), infection (39), diarrhoea (31), nausea (29), and fatigue (21); and grade 3 or 4 thrombocytopenia (29), lymphocytopenia (18), and neutropenia (18). On the intermittent 14/21 schedule, dose-limiting toxic effects were hospital admissions for bronchitis (one) and pleural effusion (one), grade 3 increase in aminotransferases (one), grade 4 thrombocytopenia (one), and grade 3 cardiac arrhythmia (one). To reduce platelet nadir associated with intermittent 14/21 dosing, we assessed a 150 mg/day lead-in dose followed by a continuous 21/21 dosing schedule. On the 21/21 dosing schedule, two patients did not complete the first cycle and were excluded from assessment of dose-limiting toxic effects; dose-limiting toxic effects were grade 4 thrombocytopenia (one), grade 3 increase in aminotransferases (one), and grade 3 gastrointestinal bleeding (one). Navitoclax showed a pharmacodynamic effect on circulating platelets and T cells. Clinical responses occurred across the range of doses and in several tumour types. Ten of 46 patients with assessable disease had a partial response, and these responders had median progression-free survival of 455 days (IQR 40-218).
Navitoclax has a novel mechanism of peripheral thrombocytopenia and T-cell lymphopenia, attributable to high-affinity inhibition of BCL-XL and BCL-2, respectively. On the basis of these findings, a 150 mg 7-day lead-in dose followed by a 325 mg dose administered on a continuous 21/21 dosing schedule was selected for phase 2 study.
Abbott Laboratories, Genentech, and National Cancer Institute, National Institutes of Health.

Download full-text


Available from: Owen A O'Connor, Dec 25, 2013
49 Reads
  • Source
    • "Autologous stem cell transplantation did not improve outcomes in patients who achieve complete Case Reports in Oncological Medicine remission [15]. Role of targeted agents in DHL is currently being explored and preclinical and clinical studies are underway testing PI3K inhibitors, Aurora kinase inhibitors, and BCL-2 inhibitors [16] [17] [18]. Phase II trial (NCT02272686) of Bruton's tyrosine kinase inhibitor (ibrutinib) after stem cell transplantation is also being considered [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tolosa-Hunt syndrome (THS) is a painful condition characterized by hemicranial pain, retroorbital pain, loss of vision, oculomotor nerve paralysis, and sensory loss in distribution of ophthalmic and maxillary division of trigeminal nerve. Lymphomas rarely involve cavernous sinus and simulate Tolosa-Hunt syndrome. Here we present a first case of double-hit B cell lymphoma (DHL) relapsing and masquerading as Tolosa-Hunt syndrome. The neurological findings were explained by a lymphomatous infiltration of the right Gasserian ganglion which preceded systemic relapse. As part of this report, the diagnostic criteria for Tolosa-Hunt syndrome and double-hit lymphoma are reviewed and updated treatment recommendations are presented.
    Case Reports in Oncological Medicine 03/2015; Case Reports in Oncological Medicine. DOI:10.1155/2015/249891
    • "It turns out that many cancer cells do not only upregulate Bcl-2 survival factors but also Bim, tBid and Puma, a mechanism called " addiction " (Certo et al., 2006). This may explain the high sensitivity of cancer cells to be killed by BH3-mimetics such as ABT-267, ABT-199 and others (Tse et al., 2008; Wilson et al., 2010; Vandenberg and Cory, 2013). Apart from interacting with BH3-only proteins, Bcl- 2 survival factors also sequester accidently activated Bax and Bak in healthy cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can"sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This"sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host. Copyright © 2015. Published by Elsevier B.V.
    Virus Research 03/2015; 13. DOI:10.1016/j.virusres.2015.02.026 · 2.32 Impact Factor
  • Source
    • "One major challenge for the development of dual Bcl-2/Bcl-xL inhibitors is the on-target cytotoxicity on platelets, which rely on Bcl-xL for survival [32], [47]. Consistent with its subnanomolar binding affinity to Bcl-xL, BM-1197 at 15 mg/kg effectively decreases platelet count in mice (Fig 11). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bcl-2 and Bcl-xL are critical regulators of apoptosis that are overexpressed in a variety of human cancers and pharmacological inhibition of Bcl-2 and Bcl-xL represents a promising strategy for cancer treatment. Using a structure-based design approach, we have designed BM-1197 as a potent and efficacious dual inhibitor of Bcl-2 and Bcl-xL. BM-1197 binds to Bcl-2 and Bcl-xL proteins with Ki values less than 1 nM and shows >1,000-fold selectivity over Mcl-1. Mechanistic studies performed in the Mcl-1 knockout mouse embryonic fibroblast (MEF) cells revealed that BM-1197 potently disassociates the heterodimeric interactions between anti-apoptotic and pro-apoptotic Bcl-2 family proteins, concomitant with conformational changes in Bax protein, loss of mitochondrial membrane potential and subsequent cytochrome c release to the cytosol, leading to activation of the caspase cascade and apoptosis. BM-1197 exerts potent growth-inhibitory activity in 7 of 12 small cell lung cancer cell lines tested and induces mechanism-based apoptotic cell death. When intravenously administered at daily or weekly in H146 and H1963 small-cell lung cancer xenograft models, it achieves complete and long-term tumor regression. Consistent with its targeting of Bcl-xL, BM-1197 causes transit platelet reduction in mice. Collectively, our data indicate that BM-1197 is a promising dual Bcl-2/Bcl-xL inhibitor which warrants further investigation as a new anticancer drug.
    PLoS ONE 06/2014; 9(6):e99404. DOI:10.1371/journal.pone.0099404 · 3.23 Impact Factor
Show more