Article

Cationic solid lipid nanoparticles loaded by cystein proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system:Characterization and in vitro evaluations.

Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
Journal of Pharmacy and Pharmaceutical Sciences (Impact Factor: 1.68). 11/2010; 13(3):320-35.
Source: PubMed

ABSTRACT Leishmaniasis is a major health problem in many tropical and sub-tropical countries and development of a safe and easily-available vaccine has high priority. Although several antigens potentially capable of inducing protective immunity have been studied, in the absence of pharmaceutical industry interest they have remained as fine publications only. Amongst them, Cathepsin L-like cysteine proteinases (CPs) have received considerable attention and type I and II CPs have been used in a heterologous prime-boost vaccination regime for experimental visceral leishmaniasis in dogs. Due to the promising results of the mentioned vaccination regime, we aimed to evaluate cationic solid lipid nanoparticles (cSLNs) for in vitro delivery of cpa, cpb and cpb(CTE) intended to be used as a cocktail DNA vaccine in our forthcoming studies.
cSLNs were formulated of cetyl palmitate, cholesterol, DOTAP and Tween 80 via melt emulsification method followed by high shear homogenization. Different formulations were prepared by anchoring pDNAs on the surface of cSLNs via charge interaction. The formulations were characterized according to their size and zeta potential as well as pDNA integrity and stability against DNase I treatment. Lipoplexes' cytotoxicity was investigated on COS-7 cells by MTT test. The effect of the DOTAP:pDNA ratio on protection ability and cytotoxicity was also studied. In vitro transfection efficiency was qualified by fluorescent microscopy and quantified using flow cytometry technique.
cSLN-pDNA complexes were formulated with suitable size and zeta potential. Efficiency/cytotoxicity ratio of cSLN-pDNAs formulations was comparable to linear PEI-25KD-pDNAs polyplexes while exhibiting significantly lower cytotoxicity.
Tested formulations were able to deliver immunogenic CP genes efficiently. This data proves the ability of this system as a promising DNA vaccine carrier for leishmaniasis to cover the main drawback of naked pDNA delivery that is rapid elimination from the circulation.

Download full-text

Full-text

Available from: Delaram Doroud, Aug 18, 2015
1 Follower
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the development of genomic technologies, the prospect for gene therapy has progressed rapidly. The major challenge of gene delivery is to improve the transfection efficiencies of the nonviral carriers. Among various nonviral gene vectors, nanoparticles (NPs) offer an ideal platform for the incorporation of all the desirable characteristics into a single gene delivery system. In this chapter, some of the most popularly used lipid- and polymer-based gene delivery vectors and their components are discussed in terms of their characteristics, advantages, and limitations. Although substantial progress has been made, further development of sophisticated delivery systems is foreseen for the nonviral vectors' application in gene therapy. Therefore, we have described several effective strategies to enhance the transfection efficiency of nonviral gene vectors. It is hoped that this review will provide an impetus to the expansion of this promising field of nanomedicine.
    Progress in molecular biology and translational science 01/2011; 104:509-62. DOI:10.1016/B978-0-12-416020-0.00013-9 · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Appropriate adjuvant, proper antigen(s) and a suitable formulation are required to develop stable, safe and immunogenic vaccines. Leishmanial cysteine proteinase type I (CPB) is a promising vaccine candidate; nevertheless, it requires a delivery system to induce a potent immune response. Herein, solid lipid nanoparticles (SLN) have been applied for CPB [with and without C-terminal extension (CTE)] formulation to utilize as a vaccine against Leishmania major infection in C57BL/6 mice. Therefore, SLN-CPB and SLN-CPB(-CTE) formulations were prepared from cetyl palmitate and cholesterol, using melt emulsification method. After intraperitoneal vaccination and subsequent L. major challenge, a strong antigen-specific T-helper type 1 (Th1) immune response was induced compared to control groups. Lymph node cells from immunized mice displayed lower parasite burden, higher IFN-γ, IgG2a and lower IL-4 production, indicating that robust Th1 immune response had been induced. Our results revealed that CTE is not necessary for inducing protective responses against L. major infection as the IFN-γ/IL-4 ratio was significantly higher, whereas IgG1 responses were lower in the SLN-CPB(-CTE) vaccinated group, post-challenge. Thus, SLN-CPB(-CTE) was shown to induce specific Th1 immune responses to control L. major infection, through effective antigen delivery to the peritoneal antigen presenting cells.
    Parasite Immunology 03/2011; 33(6):335-48. DOI:10.1111/j.1365-3024.2011.01289.x · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Earlier generations of Leishmania vaccines have reached the third-phase of clinical trials, however none of them have shown adequate efficacy due to lack of an appropriate adjuvant. In this study, cationic solid lipid nanoparticles (cSLNs) were used to formulate three pDNAs encoding L. major cysteine proteinase type I (cpa), II (cpb) and III (cpc). BALB/c mice were immunized twice with a 3-week interval, with SLN-pcDNA-cpa/b/c, pcDNA-cpa/b/c, SLN, SLN-pcDNA and PBS. Footpad assessments, parasite burden, cytokine and antibody responses were evaluated. Mice vaccinated with SLN-pcDNA-cpa/b/c significantly (p<0.05) showed higher protection levels with specific Th1 immune response development compared to other groups. This is the first report demonstrating cSLNs as a nanoscale vehicle boosting immune response quality and quantity; in a designable trend. The nanomedical feature of this novel formulation can be applied for wide-spread use in genetic vaccination against leishmaniasis, which is currently managed only through relatively ineffectual therapeutic regimens.
    Journal of Controlled Release 04/2011; 153(2):154-62. DOI:10.1016/j.jconrel.2011.04.011 · 7.26 Impact Factor
Show more