[Efficacy and safety of high-dose α-lipoic acid in the treatment of diabetic polyneuropathy].

Ruijin Hospital, Jiaotong University School of Medicine, Yuanyang Subdivision, Shanghai 200025, China.
Zhonghua yi xue za zhi 09/2010; 90(35):2473-6.
Source: PubMed

ABSTRACT To evaluate the efficacy and safety of high-dose α-lipoic acid in the treatment of diabetic polyneuropathy with regards to sensory symptoms and nerve conduction velocity.
A total of 236 diabetics with symptomatic polyneuropathy were enrolled into this 5-center, randomized, double-blind and placebo-controlled study of α-lipoic acid 1800 mg daily (n = 117) or matching placebo (n = 119) for 12 weeks. The primary outcome was total symptom score (TSS). Secondary end points included nerve conduction velocity, individual symptom score, HbA1c and safety parameters. The above parameters were reviewed and recorded at zero point and after treatment for 2, 4, 8, 12 weeks separately.
73.27% patients with symptomatic polyneuropathy improved after treatment with α-lipoic acid for 12 weeks versus 18.27% with placebo. TSS declined by 2.6 ± 2.3 with α-lipoic acid. And it was more than 0.7 ± 1.4 versus placebo (P < 0.05). TSS decreased quickly after treatment with α-lipoic acid for 2 weeks (P < 0.05). And it was better than placebo. Individual symptom scores of pain, extremity numbness, burning sensation or resting abnormal sensations were significantly diminished as compared to those before treatment and placebo group (all P < 0.05). Nerve conduction velocity had no change. HbA1c further decreased at the end of trial after α-lipoic acid treatment (P < 0.05). The incidence rates of adverse effects were 25.4% vs 11.8% in the treatment and control groups. The major manifestation was burning sensation from throat to stomach (12.7%).
Oral treatment with high-dose α-lipoic acid for 12 weeks may improve symptoms in patients with diabetic polyneuropathy. Dose of 600 mg thrice daily for 2 weeks has marked effects with a reasonable safety.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that the sub-chronic administration of low doses of Toc or α-Toc, glyphosate and zineb to rats (i.p. 1/250 LD50, three times a week for 5 weeks) provoked severe oxidative stress (OS) in testicles. These effects were also reflected in plasma. Lipoic acid (LA) and α-tocopherol are considered as antioxidants due to their ability to neutralize reactive oxygenated species (ROS) and reset endogenous antioxidant levels. To investigate the possible protective effect on reproductive function, LA and Toc (i.p. 25, 50 and 100mg/kg) were administered simultaneously with the pesticide mixture (PM) for 5 weeks. Both drugs prevented OS and the damage to proteins and lipids caused by PM in a dose-dependent manner. The PM-induced increase levels of prostaglandins E2 and F2α was completely restored by LA but not by Toc. Similarly, only LA was able to restore the inhibition of testosterone production, the decrease of 3β- and 17β-hydroxysteroid dehydrogenases activities, and the elevation of gonatropins (FSH and LH) levels produced by PM. Furthermore, LA was more efficient than Toc in normalizing the histological alterations produced by PM administration, suggesting that pesticides act though other mechanisms that generate oxidative stress. In our experimental model LA displayed a higher protective role against pesticide-induced damage than that observed by Toc administration. Our results suggest that LA administration is a promising therapeutic strategy for coping with disorders suspected to be caused by OS generators - such as pesticides - in male reproductive system.
    Ecotoxicology and Environmental Safety 02/2013; DOI:10.1016/j.ecoenv.2013.01.022 · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with "classical" antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed.
    International Journal of Molecular Sciences 11/2014; 15(11):20169-20208. DOI:10.3390/ijms151120169 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUNDAIMS: It is suggested that the hepatic lipid composition is more important than lipid quantity in the pathogenesis of non-alcoholic steatohepatitis. We examined whether lipoic acid (LA) could alter intrahepatic lipid composition and free cholesterol distribution. HepG2 cells were cultured with palmitic acid (PA) with and without LA. Apoptosis, changes of the mitochondrial structure, intracellular lipid partitioning, and reactive oxygen species (ROS) activity were measured. Free fatty acid (FA) increased apoptosis, and LA co-treatment prevented this lipotoxicity (apoptosis in controls vs PA vs PA+LA, 0.5% vs 19.5% vs 1.6%, p<0.05). LA also restored the intracellular mitochondrial DNA copy number (553±33.8 copies vs 291±14.55 copies vs 421±21.05 copies, p<0.05) and reversed the morphological changes induced by PA. In addition, ROS was increased in response to PA and was decreased in response to LA co-treatment (41,382 relative fluorescence unit [RFU] vs 43,646 RFU vs 41,935 RFU, p<0.05). LA co-treatment increased the monounsaturated and polyunsaturated FA concentrations and decreased the total saturated FA fraction. It also prevented the movement of intracellular free cholesterol from the cell membrane to the cytoplasm. LA opposes free FA-generated lipotoxicity by altering the intracellular lipid composition and free cholesterol distribution.
    Gut and liver 03/2013; 7(2):221-7. DOI:10.5009/gnl.2013.7.2.221 · 1.49 Impact Factor