Article

Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms

Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, People's Republic of China.
Microbial Cell Factories (Impact Factor: 4.25). 11/2010; 9:91. DOI: 10.1186/1475-2859-9-91
Source: PubMed

ABSTRACT Fumarase catalyzes the reversible hydration of fumarate to L-malate and is a key enzyme in the tricarboxylic acid (TCA) cycle and in amino acid metabolism. Fumarase is also used for the industrial production of L-malate from the substrate fumarate. Thermostable and high-activity fumarases from organisms that inhabit extreme environments may have great potential in industry, biotechnology, and basic research. The marine environment is highly complex and considered one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms are inaccessible in nature and are not easily cultivated in the laboratory. Metagenomic approaches provide a powerful tool to isolate and identify enzymes with novel biocatalytic activities for various biotechnological applications.
A plasmid metagenomic library was constructed from uncultivated marine microorganisms within marine water samples. Through sequence-based screening of the DNA library, a gene encoding a novel fumarase (named FumF) was isolated. Amino acid sequence analysis revealed that the FumF protein shared the greatest homology with Class II fumarate hydratases from Bacteroides sp. 2_1_33B and Parabacteroides distasonis ATCC 8503 (26% identical and 43% similar). The putative fumarase gene was subcloned into pETBlue-2 vector and expressed in E. coli BL21(DE3)pLysS. The recombinant protein was purified to homogeneity. Functional characterization by high performance liquid chromatography confirmed that the recombinant FumF protein catalyzed the hydration of fumarate to form L-malate. The maximum activity for FumF protein occurred at pH 8.5 and 55°C in 5 mM Mg(2+). The enzyme showed higher affinity and catalytic efficiency under optimal reaction conditions: K(m) = 0.48 mM, V(max) = 827 μM/min/mg, and k(cat)/K(m) = 1900 mM/s.
We isolated a novel fumarase gene, fumF, from a sequence-based screen of a plasmid metagenomic library from uncultivated marine microorganisms. The properties of FumF protein may be ideal for the industrial production of L-malate under higher temperature conditions. The identification of FumF underscores the potential of marine metagenome screening for novel biomolecules.

0 Followers
 · 
135 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fumarase is a key enzyme that catalyzes the reversible hydration of fumarate to L-malate in the tricarboxylic acid cycle. This reaction has been extensively utilized for industrial applications in producing L-malate. In this study, a fumarase C gene from Streptomyces lividans TK54 (slFumC) was cloned and expressed as a fused protein (SlFumC) in Escherichia coli. The molecular mass of SlFumC was about 49 kDa determined by SDS-PAGE. Kinetic studies showed that the K m value of SlFumC for L-malate increased by approximately 8.5-fold at pH 6.5 (6.7 ± 0.81 mM) to 8.0 (57.0 ± 1.12 mM), which was higher than some known fumarases. The catalytic efficiency (k cat) and the specific activity increased by about 9.5-fold at pH 6.5 (65 s(-1)) to 8.0 (620 s(-1)) and from 79 U/mg at pH 6.5 to 752 U/mg at pH 8.0, respectively. Therefore, SlFumC may acquire strong catalytic ability by increasing pH to partially compensate for the loss of substrate affinity. The enzyme also showed substrate inhibition phenomenon, which is pH-dependent. Specific activity of SlFumC was gradually enhanced with increasing phosphate concentrations. However, no inhibition was observed at high concentration of phosphate ion, which was distinctly different in case of other Class II fumarases. In industrial process, the reaction temperatures for L-malate production are usually set between 40 and 60 °C. The recombinant SlFumC displayed maximal activity at 45 °C and remained over 85 % of original activity after 48 h incubation at 40 °C, which was more thermostable than other fumarases from Streptomyces and make it an efficient enzyme for use in the industrial production of L-malate.
    Molecular Biology Reports 12/2013; DOI:10.1007/s11033-013-2885-8 · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well established in the scientific literature that only a small fraction of microorganisms can be cultured by conventional microbiology methods. The ever cheaper and faster DNA sequencing methods, together with advances in bioinformatics, have improved our understanding of the structure and functional behavior of microbial communities in many complex environments. However, the metagenomics approach alone cannot elucidate the functionality of all microorganisms, because a vast number of potentially new genes have no homologs in public databases. Metatranscriptomics and metaproteomics are approaches based on different techniques and have recently emerged as promising techniques to describe microbial activities within a given environment at the molecular level. In this review, we will discuss current developments and applications of metagenomics, metatranscriptomics and metaproteomics, and their limitations in the study of microbial communities. The combined analysis of genes, mRNA and protein in complex microbial environments will be key to identify novel biological molecules for biotechnological purposes.
    Current Protein and Peptide Science 08/2013; DOI:10.2174/13892037113149990062 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
    Marine Drugs 06/2014; 12(6):3516-59. DOI:10.3390/md12063516 · 3.51 Impact Factor

Full-text (4 Sources)

Download
48 Downloads
Available from
Jun 5, 2014