Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms.

Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, People's Republic of China.
Microbial Cell Factories (Impact Factor: 4.25). 01/2010; 9:91. DOI: 10.1186/1475-2859-9-91
Source: PubMed

ABSTRACT Fumarase catalyzes the reversible hydration of fumarate to L-malate and is a key enzyme in the tricarboxylic acid (TCA) cycle and in amino acid metabolism. Fumarase is also used for the industrial production of L-malate from the substrate fumarate. Thermostable and high-activity fumarases from organisms that inhabit extreme environments may have great potential in industry, biotechnology, and basic research. The marine environment is highly complex and considered one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms are inaccessible in nature and are not easily cultivated in the laboratory. Metagenomic approaches provide a powerful tool to isolate and identify enzymes with novel biocatalytic activities for various biotechnological applications.
A plasmid metagenomic library was constructed from uncultivated marine microorganisms within marine water samples. Through sequence-based screening of the DNA library, a gene encoding a novel fumarase (named FumF) was isolated. Amino acid sequence analysis revealed that the FumF protein shared the greatest homology with Class II fumarate hydratases from Bacteroides sp. 2_1_33B and Parabacteroides distasonis ATCC 8503 (26% identical and 43% similar). The putative fumarase gene was subcloned into pETBlue-2 vector and expressed in E. coli BL21(DE3)pLysS. The recombinant protein was purified to homogeneity. Functional characterization by high performance liquid chromatography confirmed that the recombinant FumF protein catalyzed the hydration of fumarate to form L-malate. The maximum activity for FumF protein occurred at pH 8.5 and 55°C in 5 mM Mg(2+). The enzyme showed higher affinity and catalytic efficiency under optimal reaction conditions: K(m) = 0.48 mM, V(max) = 827 μM/min/mg, and k(cat)/K(m) = 1900 mM/s.
We isolated a novel fumarase gene, fumF, from a sequence-based screen of a plasmid metagenomic library from uncultivated marine microorganisms. The properties of FumF protein may be ideal for the industrial production of L-malate under higher temperature conditions. The identification of FumF underscores the potential of marine metagenome screening for novel biomolecules.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
    Marine Drugs 06/2014; 12(6):3516-59. · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well established in the scientific literature that only a small fraction of microorganisms can be cultured by conventional microbiology methods. The ever cheaper and faster DNA sequencing methods, together with advances in bioinformatics, have improved our understanding of the structure and functional behavior of microbial communities in many complex environments. However, the metagenomics approach alone cannot elucidate the functionality of all microorganisms, because a vast number of potentially new genes have no homologs in public databases. Metatranscriptomics and metaproteomics are approaches based on different techniques and have recently emerged as promising techniques to describe microbial activities within a given environment at the molecular level. In this review, we will discuss current developments and applications of metagenomics, metatranscriptomics and metaproteomics, and their limitations in the study of microbial communities. The combined analysis of genes, mRNA and protein in complex microbial environments will be key to identify novel biological molecules for biotechnological purposes.
    Current Protein and Peptide Science 08/2013; · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A potential novel fumarate reductase gene designated frd1A was isolated by screening a marine metagenomic library through a sequence-based strategy. Sequence analyses indicated that Frd1A and other putative fumarate reductases were closely related. The putative fumarate reductase gene was subcloned into a pETBlue-2 vector and expressed in Escherichia coli Tuner(DE3)pLacІ cells. The recombinant protein was purified to homogeneity. Functional characterization by high-performance liquid chromatography demonstrated that the recombinant Frd1A protein could catalyze the hydrogenation of fumarate to succinate acid. The Frd1A protein displayed an optimal activity at pH 7.0 and 28 °C, which could be stimulated by adding metal ions such as Zn(2+) and Mg(2+). The Frd1A enzyme showed a comparable affinity and catalytic efficiency under optimal reaction conditions: k m =0.227 mmol/L, v max= 29.9 U/mg, and k cat/k m=5.44 × 10(4) per mol/s. The identification of Frd1A protein underscores the potential of marine metagenome screening for novel biomolecules.
    Folia Microbiologica 05/2013; · 1.15 Impact Factor

Full-text (3 Sources)

Available from
Jun 5, 2014