Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms.

Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, People's Republic of China.
Microbial Cell Factories (Impact Factor: 3.31). 01/2010; 9:91. DOI: 10.1186/1475-2859-9-91
Source: PubMed

ABSTRACT Fumarase catalyzes the reversible hydration of fumarate to L-malate and is a key enzyme in the tricarboxylic acid (TCA) cycle and in amino acid metabolism. Fumarase is also used for the industrial production of L-malate from the substrate fumarate. Thermostable and high-activity fumarases from organisms that inhabit extreme environments may have great potential in industry, biotechnology, and basic research. The marine environment is highly complex and considered one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms are inaccessible in nature and are not easily cultivated in the laboratory. Metagenomic approaches provide a powerful tool to isolate and identify enzymes with novel biocatalytic activities for various biotechnological applications.
A plasmid metagenomic library was constructed from uncultivated marine microorganisms within marine water samples. Through sequence-based screening of the DNA library, a gene encoding a novel fumarase (named FumF) was isolated. Amino acid sequence analysis revealed that the FumF protein shared the greatest homology with Class II fumarate hydratases from Bacteroides sp. 2_1_33B and Parabacteroides distasonis ATCC 8503 (26% identical and 43% similar). The putative fumarase gene was subcloned into pETBlue-2 vector and expressed in E. coli BL21(DE3)pLysS. The recombinant protein was purified to homogeneity. Functional characterization by high performance liquid chromatography confirmed that the recombinant FumF protein catalyzed the hydration of fumarate to form L-malate. The maximum activity for FumF protein occurred at pH 8.5 and 55°C in 5 mM Mg(2+). The enzyme showed higher affinity and catalytic efficiency under optimal reaction conditions: K(m) = 0.48 mM, V(max) = 827 μM/min/mg, and k(cat)/K(m) = 1900 mM/s.
We isolated a novel fumarase gene, fumF, from a sequence-based screen of a plasmid metagenomic library from uncultivated marine microorganisms. The properties of FumF protein may be ideal for the industrial production of L-malate under higher temperature conditions. The identification of FumF underscores the potential of marine metagenome screening for novel biomolecules.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine ecosystems are home to bacteria which are exposed to a wide variety of environmental conditions, such as extremes in temperature, salinity, nutrient availability and pressure. Survival under these conditions must have necessitated the adaptation and the development of unique cellular biochemistry and metabolism by these microbes. Thus, enzymes isolated from these microbes have the potential to possess quite unique physiological and biochemical properties. This review outlines a number of function-based metagenomic approaches which are available to screen metagenomic libraries constructed from marine ecosystems to facilitate the exploitation of some of these potentially novel biocatalysts. Functional screens to isolate novel cellulases, lipases and esterases, proteases, laccases, oxidoreductases and biosurfactants are described, together with approaches which can be employed to help overcome some of the typical problems encountered with functional metagenomic-based screens.
    Journal of Applied Microbiology 07/2011; 111(4):787-99. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In general, the biodegradation of a toxic compound by a micro-organism requires the concurrence of, at least, two features in the biological system: first, the capability of the micro-organism to metabolize the toxic compound, and secondly, the capacity to resist its toxic effect. Pseudomonas pseudoalcaligenes CECT5344 is a bacterium used in the biodegradation of cyanide because it is capable to use it as a nitrogen source. The present review is mainly focused on the putative role of iron-containing enzymes of the tricarboxylic acid cycle in cyanide resistance by P. pseudoalcaligenes CECT5344.
    Biochemical Society Transactions 12/2011; 39(6):1849-53. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
    Marine Drugs 01/2014; 12(6):3516-59. · 3.98 Impact Factor

Full-text (3 Sources)

Available from
Jun 5, 2014