Article

Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold.

University of Oxford Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK.
Journal of Cardiovascular Magnetic Resonance (Impact Factor: 4.44). 01/2010; 12:69. DOI: 10.1186/1532-429X-12-69
Source: PubMed

ABSTRACT T1 mapping allows direct in-vivo quantitation of microscopic changes in the myocardium, providing new diagnostic insights into cardiac disease. Existing methods require long breath holds that are demanding for many cardiac patients. In this work we propose and validate a novel, clinically applicable, pulse sequence for myocardial T1-mapping that is compatible with typical limits for end-expiration breath-holding in patients.
The Shortened MOdified Look-Locker Inversion recovery (ShMOLLI) method uses sequential inversion recovery measurements within a single short breath-hold. Full recovery of the longitudinal magnetisation between sequential inversion pulses is not achieved, but conditional interpretation of samples for reconstruction of T1-maps is used to yield accurate measurements, and this algorithm is implemented directly on the scanner. We performed computer simulations for 100 ms<T1 < 2.7 s and heart rates 40-100 bpm followed by phantom validation at 1.5T and 3T. In-vivo myocardial T1-mapping using this method and the previous gold-standard (MOLLI) was performed in 10 healthy volunteers at 1.5T and 3T, 4 volunteers with contrast injection at 1.5T, and 4 patients with recent myocardial infarction (MI) at 3T.
We found good agreement between the average ShMOLLI and MOLLI estimates for T1 < 1200 ms. In contrast to the original method, ShMOLLI showed no dependence on heart rates for long T1 values, with estimates characterized by a constant 4% underestimation for T1 = 800-2700 ms. In-vivo, ShMOLLI measurements required 9.0 ± 1.1 s (MOLLI = 17.6 ± 2.9 s). Average healthy myocardial T1 s by ShMOLLI at 1.5T were 966 ± 48 ms (mean ± SD) and 1166 ± 60 ms at 3T. In MI patients, the T1 in unaffected myocardium (1216 ± 42 ms) was similar to controls at 3T. Ischemically injured myocardium showed increased T1 = 1432 ± 33 ms (p < 0.001). The difference between MI and remote myocardium was estimated 15% larger by ShMOLLI than MOLLI (p < 0.04) which suffers from heart rate dependencies for long T1. The in-vivo variability within ShMOLLI T1-maps was only 14% (1.5T) or 18% (3T) higher than the MOLLI maps, but the MOLLI acquisitions were twice longer than ShMOLLI acquisitions.
ShMOLLI is an efficient method that generates immediate, high-resolution myocardial T1-maps in a short breath-hold with high precision. This technique provides a valuable clinically applicable tool for myocardial tissue characterisation.

0 Bookmarks
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting.METHODS:Healthy subjects (n = 102; mean age 41 years (range 17-83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, lambda and extracellular volume fraction (ECV) in a core lab using standardized postprocessing.RESULTS:In healthy controls, mean native T1 values were 950 +/- 21 msec at 1.5 T and 1052 +/- 23 at 3 T. lambda and ECV values were 0.44 +/- 0.06 and 0.25 +/- 0.04 at 1.5 T, and 0.44 +/- 0.07 and 0.26 +/- 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. lambda and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1.CONCLUSION:We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites.
    Journal of Cardiovascular Magnetic Resonance 01/2014; 16(1):69+. · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial T1 relaxation times have been reported to be markedly abnormal in diverse myocardial pathologies, ascribed to interstitial changes, evaluated by T1 mapping and calculation of extracellular volume (ECV). T1 mapping is sensitive to myocardial water content of both intra- and extracellular in origin, but the effect of intravascular compartment changes on T1 has been largely neglected. We aimed to assess the role of intravascular compartment on native (pre-contrast) T1 values by studying the effect of adenosine-induced vasodilatation in patients with severe aortic stenosis (AS) before and after aortic valve replacement (AVR). 42 subjects (26 patients with severe AS without obstructive coronary artery disease and 16 controls) underwent cardiovascular magnetic resonance at 3 T for native T1-mapping (ShMOLLI), first-pass perfusion (myocardial perfusion reserve index-MPRI) at rest and during adenosine stress, and late gadolinium enhancement (LGE). AS patients had increased resting myocardial T1 (1196 ± 47 ms vs. 1168 ± 27 ms, p = 0.037), reduced MPRI (0.92 ± 0.31 vs. 1.74 ± 0.32, p < 0.001), and increased left ventricular mass index (LVMI) and LGE volume compared to controls. During adenosine stress, T1 in AS was similar to controls (1240 ± 51 ms vs. 1238 ± 54 ms, p = 0.88), possibly reflecting a similar level of maximal coronary vasodilatation in both groups. Conversely, the T1 response to stress was blunted in AS (ΔT1 3.7 ± 2.7% vs. 6.0 ± 4.2% in controls, p = 0.013). Seven months after AVR (n = 16) myocardial T1 and response to adenosine stress recovered towards normal. Native T1 values correlated with reduced MPRI, aortic valve area, and increased LVMI. Our study suggests that native myocardial T1 values are not only influenced by interstitial and intracellular water changes, but also by changes in the intravascular compartment. Performing T1 mapping during or soon after vasodilator stress may affect ECV measurements given that hyperemia alone appears to substantially alter T1 values.
    Journal of Cardiovascular Magnetic Resonance 11/2014; 16(92). · 4.44 Impact Factor
  • Source
    Journal of Cardiovascular Magnetic Resonance 10/2014; 16:69. · 4.44 Impact Factor

Full-text (2 Sources)

Download
40 Downloads
Available from
Jun 5, 2014

Vanessa M Ferreira