Interferon-α suppressed granulocyte colony stimulating factor production is reversed by CL097, a TLR7/8 agonist.

National Liver Transplantation Unit, St. Vincent's University Hospital, Dublin, Ireland.
Journal of Gastroenterology and Hepatology (Impact Factor: 3.33). 12/2010; 25(12):1883-90. DOI: 10.1111/j.1440-1746.2010.06281.x
Source: PubMed

ABSTRACT Neutropenia, a major side-effect of interferon-α (IFN-α) therapy can be effectively treated by the recombinant form of granulocyte colony stimulating factor (G-CSF), an important growth factor for neutrophils. We hypothesized that IFN-α might suppress G-CSF production by peripheral blood mononuclear cells (PBMCs), contributing to the development of neutropenia, and that a toll-like receptor (TLR) agonist might overcome this suppression.
Fifty-five patients who were receiving IFN-α/ribavirin combination therapy for chronic hepatitis C virus (HCV) infection were recruited. Absolute neutrophil counts (ANC), monocyte counts and treatment outcome data were recorded. G-CSF levels in the supernatants of PBMCs isolated from the patients and healthy controls were assessed by enzyme-linked immunosorbent assay following 18 h of culture in the absence or presence of IFN- α or the TLR7/8 agonist, CL097.
Therapeutic IFN-α caused a significant reduction in neutrophil counts in all patients, with 15 patients requiring therapeutic G-CSF. The reduction in ANC over the course of IFN-α treatment was paralleled by a decrease in the ability of PBMCs to produce G-CSF. In vitro G-CSF production by PBMCs was suppressed in the presence of IFN-α; however, co-incubation with a TLR7/8 agonist significantly enhanced G-CSF secretion by cells obtained both from HCV patients and healthy controls.
Suppressed G-CSF production in the presence of IFN-α may contribute to IFN-α-induced neutropenia. However, a TLR7/8 agonist elicits G-CSF secretion even in the presence of IFN-α, suggesting a possible therapeutic role for TLR agonists in treatment of IFN-α-induced neutropenia.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors (TLRs) are pattern recognition receptors playing a fundamental role in sensing microbial invasion and initiating innate and adaptive immune responses. TLRs are also triggered by danger signals released by injured or stressed cells during sepsis. Here we focus on studies developing TLR agonists and antagonists for the treatment of infectious diseases and sepsis. Positioned at the cell surface, TLR4 is essential for sensing lipopolysaccharide of Gram-negative bacteria, TLR2 is involved in the recognition of a large panel of microbial ligands, while TLR5 recognizes flagellin. Endosomal TLR3, TLR7, TLR8, TLR9 are specialized in the sensing of nucleic acids produced notably during viral infections. TLR4 and TLR2 are favorite targets for developing anti-sepsis drugs, and antagonistic compounds have shown efficient protection from septic shock in pre-clinical models. Results from clinical trials evaluating anti-TLR4 and anti-TLR2 approaches are presented, discussing the challenges of study design in sepsis and future exploitation of these agents in infectious diseases. We also report results from studies suggesting that the TLR5 agonist flagellin may protect from infections of the gastrointestinal tract and that agonists of endosomal TLRs are very promising for treating chronic viral infections. Altogether, TLR-targeted therapies have a strong potential for prevention and intervention in infectious diseases, notably sepsis.
    Frontiers in Immunology 01/2013; 4:387.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colony-stimulating factors (CSFs) are attractive adjunctive anti-infective therapies. Used to enhance innate host defenses against microbial pathogens, the myeloid CSFs increase absolute numbers of circulating innate immune effector cells by accelerating bone marrow production and maturation, or augment the function of those cells through diverse effects on chemotaxis, phagocytosis, and microbicidal functions. This article summarizes the evidence supporting the accepted clinical uses of the myeloid CSFs in patients with congenital or chemotherapy-induced neutropenia, and presents an overview of proposed and emerging uses of the CSFs for the prevention and treatment of infectious diseases in other immunosuppressed and immunocompetent patient populations.
    Infectious disease clinics of North America 12/2011; 25(4):803-17. · 2.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor (TLR)-8 agonists activate adaptive immune responses by inducing robust production of T helper 1-polarizing cytokines, suggesting that TLR8-active compounds might be promising candidate vaccine adjuvants. Recently, a C2-butyl furo[2,3-c]quinoline was reported with purely TLR8 agonistic activity. This compound was successfully co-crystallized with the human TLR8 ectodomain, and the co-crystal structure revealed ligand-induced reorganization of the binding pocket of TLR8. The loss of a key hydrogen bond between the oxygen atom of the furanyl ring of the agonist and Thr 574 in TLR8 suggested that the furan ring is dispensable. Employing a disconnection strategy, 3- and 4-substituted aminoquinolines were investigated. Focused structure-based ligand design studies led to the identification of 3-pentyl-quinoline-2-amine as a novel, structurally simple, and highly potent human TLR8-specific agonist (EC50 =0.2 μM). Preliminary evaluation of this compound in ex vivo human blood assay systems revealed that it retains prominent cytokine-inducing activity. Together, these results indicate the suitability of this compound as a novel vaccine adjuvant, warranting further investigation.
    ChemMedChem 01/2014; 9(4). · 3.05 Impact Factor


Available from
May 29, 2014