Decay mechanisms of excited electrons in quantum-well states of ultrathin Pb islands grown on Si(111): Scanning tunneling spectroscopy and theory

Physical review. B, Condensed matter (Impact Factor: 3.77). 08/2009; DOI: 10.1103/PhysRevB.80.081409
Source: OAI

ABSTRACT Using low-temperature scanning tunneling spectroscopy at 5 and 50 K, we studied the linewidth of unoccupied quantum-well states in ultrathin Pb islands, grown on Si(111) on two different Pb/Si interfaces. A quantitative analysis of the differential conductance spectra allowed us to determine the electron-electron (e-e), electron-phonon (e-ph) and the interface and defect contributions to the lifetime. Layer-dependent ab initio calculations of the e-ph linewidth contribution are in excellent agreement with the data. Importantly, the sum of the calculated e-e and e-ph lifetime broadening follows the experimentally observed quadratic energy dependence.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the ultrafast electron dynamics of occupied quantum well states (QWSs) in Pb/Si(111) with time-resolved photoemission spectroscopy. We find an ultrafast increase in binding energy of the QWSs driven by the optical excitation, while the electronic system is in a non-equilibrium state. We explain this transient energetic stabilization in the photoexcited state by an ultrafast modification of the Fermi level pinning, triggered by charge transfer across the Pb/Si interface. In addition, we observe the excitation of a coherent surface phonon mode at a frequency of ~2 THz, which modulates the QWS binding energy.
    New Journal of Physics 02/2012; 14(2):023047. · 4.06 Impact Factor


1 Download
Available from