The Gradients in the 47 Tuc Red Giant Branch Bump and Horizontal Branch are Consistent With a Centrally-Concentrated, Helium-Enriched Second Stellar Generation

The Astrophysical Journal (Impact Factor: 6.28). 02/2011; 736(2). DOI: 10.1088/0004-637X/736/2/94
Source: arXiv

ABSTRACT We combine ground and space-based photometry of the Galactic globular cluster
47 Tuc to measure four independent lines of evidence for a helium gradient in
the cluster, whereby stars in the cluster outskirts would have a lower initial
helium abundance than stars in and near the cluster core. First and second, we
show that the red giant branch bump (RGBB) stars exhibit gradients in their
number counts and brightness. With increased separation from the cluster
center, they become more numerous relative to the other red giant (RG) stars.
They also become fainter. For our third and fourth lines of evidence, we show
that the horizontal branch (HB) of the cluster becomes both fainter and redder
for sightlines farther from the cluster center. These four results are
respectively detected at the 2.3$\sigma$, 3.6$\sigma$, 7.7$\sigma$ and
4.1$\sigma$ levels. Each of these independent lines of evidence is found to be
significant in the cluster-outskirts; closer in, the data are more compatible
with uniform mixing. Our radial profile is qualitatively consistent with but
quantitatively tighter than previous results based on CN absorption. These
observations are qualitatively consistent with a scenario wherein a second
generation of stars with modestly enhanced helium and CNO abundance formed deep
within the gravitational potential of a cluster of previous generation stars
having more canonical abundances.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Globular cluster (GC) color-magnitude diagrams (CMDs) are reasonably well understood in terms of standard stellar evolution. However, there are still some open issues, such as fully accounting for the horizontal branch (HB) morphology in terms of chemical and dynamical parameters. Mass loss on the red giant branch (RGB) shapes the mass distribution of the HB stars, and the color distribution in turn. The physical mechanisms driving mass loss are still unclear, as direct observations fail to reveal a clear correlation between mass-loss rate and stellar properties. The HB mass distribution is further complicated by helium-enhanced multiple stellar populations due to differences in the evolving mass along the HB. We present a simple analytical mass-loss model based on tidal stripping through Roche-Lobe overflow during stellar encounters. Our model naturally results in a non-Gaussian mass-loss distribution with high skewness and contains only two free parameters. We fit it to the HB mass distribution of four Galactic GCs, as obtained from fitting the CMD with zero age HB models. The best-fit model accurately reproduces the observed mass distribution. If confirmed on a wider sample of GCs, our results would account for the effects of dynamics in RGB mass-loss processes and provide a physically motivated procedure for synthetic CMDs of GCs. Our physical modeling of mass loss may result in the ability to disentangle the effects of dynamics and helium-enhanced multiple populations on the HB morphology and is instrumental in making HB morphology a probe of the dynamical state of GCs, leading to an improved understanding of their evolution.
    The Astrophysical Journal 06/2014; 789(1):28. DOI:10.1088/0004-637X/789/1/28 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is generally accepted today that Galactic globular clusters (GGCs) consist of at least two generations of stars that are different in their chemical composition and perhaps age. However, knowledge about the kinematical properties of these stellar generations, which may provide important information for constraining evolutionary scenarios of the GGCs, is still limited. We therefore study the connections between chemical and kinematical properties of different stellar generations in the Galactic globular cluster 47 Tuc. To achieve this goal, we used abundances of Li, O, and Na determined in 101 main sequence turn-off (TO) stars with the aid of 3D hydrodynamical model atmospheres and NLTE abundance analysis methodology. We divided our sample TO stars into three groups according to their position in the [Li/Na]-[Na/O] plane to study their spatial distribution and kinematical properties. We find that there are statistically significant radial dependencies of lithium and oxygen abundances, A(Li) and A(O), as well as that of [Li/Na] abundance ratio. Our results show that first-generation stars are less centrally concentrated and dynamically hotter than stars belonging to subsequent generations. We also find a significant correlation between the velocity dispersion and O and Na abundance, and between the velocity dispersion and the [Na/O] abundance ratio.
    Astronomy and Astrophysics 07/2014; 568. DOI:10.1051/0004-6361/201424200 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high resolution spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan-Clay 6.5m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be =-18.56 km s^-1 (sigma=10.21 km s^-1) and <[Fe/H]>=-0.68 (sigma=0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction <20% of Na-rich stars in 47 Tuc may fail to ascend the AGB. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. [abridged]
    The Astronomical Journal 12/2014; 149(2). DOI:10.1088/0004-6256/149/2/71 · 4.05 Impact Factor

Full-text (2 Sources)

Available from
Feb 19, 2015