Article

Discovery of TeV Gamma Ray Emission from Tycho's Supernova Remnant

The Astrophysical Journal Letters (Impact Factor: 5.6). 02/2011; 730(2). DOI: 10.1088/2041-8205/730/2/L20
Source: arXiv

ABSTRACT We report the discovery of TeV gamma-ray emission from the Type Ia supernova
remnant (SNR) G120.1+1.4, known as Tycho's supernova remnant. Observations
performed in the period 2008-2010 with the VERITAS ground-based gamma-ray
observatory reveal weak emission coming from the direction of the remnant,
compatible with a point source located at $00^{\rm h} \ 25^{\rm m} \ 27.0^{\rm
s},\ +64^{\circ} \ 10^{\prime} \ 50^{\prime\prime}$ (J2000). The TeV photon
spectrum measured by VERITAS can be described with a power-law $dN/dE =
C(E/3.42\;\textrm{TeV})^{-\Gamma}$ with $\Gamma = 1.95 \pm 0.51_{stat} \pm
0.30_{sys}$ and $C = (1.55 \pm 0.43_{stat} \pm 0.47_{sys}) \times 10^{-14}$
cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $\sim
0.9%$ percent of the steady Crab Nebula emission above the same energy, making
it one of the weakest sources yet detected in TeV gamma rays. We present both
leptonic and hadronic models which can describe the data. The lowest magnetic
field allowed in these models is $\sim 80 \mu$G, which may be interpreted as
evidence for magnetic field amplification.

Download full-text

Full-text

Available from: E. Roache, Sep 03, 2015
0 Followers
 · 
206 Views
 · 
65 Downloads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cosmic ray acceleration and magnetic amplification in supernova remnants is shortly reviewed. The results on the modeling of broadband electromagnetic emission from supernova remnants are presented.
    09/2011; 1381(1):199-207. DOI:10.1063/1.3635833
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study cosmic-ray acceleration in young Type Ia Supernova Remnants (SNRs) by means of test-particle diffusive shock acceleration theory and 1-D hydrodynamical simulations of their evolution. In addition to acceleration at the forward shock, we explore the particle acceleration at the reverse shock in the presence of a possible substantial magnetic field, and consequently the impact of this acceleration on the particle spectra in the remnant. We investigate the time evolution of the spectra for various time-dependent profiles of the magnetic field in the shocked region of the remnant. We test a possible influence on particle spectra of the Alfv\'enic drift of scattering centers in the precursor regions of the shocks. In addition, we study the radiation spectra and morphology in a broad band from radio to gamma-rays. It is demonstrated that the reverse shock contribution to the cosmic-ray particle population of young Type Ia SNRs may be significant, modifying the spatial distribution of particles and noticeably affecting the volume-integrated particle spectra in young SNRs. In particular spectral structures may arise in test-particle calculations that are often discussed as signatures of non-linear cosmic-ray modification of shocks. Therefore, the spectrum and morphology of emission, and their time evolution, differ from pure forward-shock solutions.
    Astroparticle Physics 10/2011; 35(6). DOI:10.1016/j.astropartphys.2011.10.001 · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.
    Astronomy and Astrophysics Review 12/2011; 20(1). DOI:10.1007/s00159-011-0049-1 · 13.31 Impact Factor
Show more