KEPLER's First Rocky Planet: Kepler-10b

Astrophysical Journal - ASTROPHYS J 02/2011; 729. DOI: 10.1088/0004-637X/729/1/27
Source: arXiv

ABSTRACT NASA's Kepler Mission uses transit photometry to determine the frequency of
earth-size planets in or near the habitable zone of Sun-like stars. The mission
reached a milestone toward meeting that goal: the discovery of its first rocky
planet, Kepler-10b. Two distinct sets of transit events were detected: 1) a 152
+/- 4 ppm dimming lasting 1.811 +/- 0.024 hours with ephemeris
T[BJD]=2454964.57375+N*0.837495 days and 2) a 376 +/- 9 ppm dimming lasting
6.86 +/- 0.07 hours with ephemeris T[BJD]=2454971.6761+N*45.29485 days.
Statistical tests on the photometric and pixel flux time series established the
viability of the planet candidates triggering ground-based follow-up
observations. Forty precision Doppler measurements were used to confirm that
the short-period transit event is due to a planetary companion. The parent star
is bright enough for asteroseismic analysis. Photometry was collected at
1-minute cadence for >4 months from which we detected 19 distinct pulsation
frequencies. Modeling the frequencies resulted in precise knowledge of the
fundamental stellar properties. Kepler-10 is a relatively old (11.9 +/- 4.5
Gyr) but otherwise Sun-like Main Sequence star with Teff=5627 +/- 44 K,
Mstar=0.895 +/- 0.060 Msun, and Rstar=1.056 +/- 0.021 Rsun. Physical models
simultaneously fit to the transit light curves and the precision Doppler
measurements yielded tight constraints on the properties of Kepler-10b that
speak to its rocky composition: Mpl=4.56 +/- 1.29 Mearth, Rpl=1.416 +/- 0.036
Rearth, and density=8.8 +/- 2.9 gcc. Kepler-10b is the smallest transiting
exoplanet discovered to date.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Characterization studies now have a dominant role in the field of exoplanets. Such studies include the measurement of an exoplanet's bulk density, its brightness temperature and the chemical composition of its atmosphere. The use of space telescopes has played a key part in the characterization of transiting exoplanets. These facilities offer astronomers data of exquisite precision and temporal sampling as well as access to wavelength regions of the electromagnetic spectrum that are inaccessible from the ground. Space missions such as the Hubble Space Telescope, Microvariability and Oscillations of Stars (MOST), Spitzer Space Telescope, Convection, Rotation and Planetary Transits (CoRoT), and Kepler have rapidly advanced our knowledge of the physical properties of exoplanets and have blazed a trail for a series of future space missions that will help us to understand the observed diversity of exoplanets.
    Nature 09/2014; 513(7518):353-7. DOI:10.1038/nature13783 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The success of the International Ultraviolet Explorer (IUE) first and then of the STIS and COS spectrographs on-board the Hubble Space Telescope (HST) demonstrate the impact that observations at UV wavelengths had and are having on modern astronomy. Several discoveries in the exoplanet field have been done at UV wavelengths. Nevertheless, the amount of data collected in this band is still limited both in terms of observed targets and time spent on each of them. For the next decade, the post-HST era, the only large (2-m class) space telescope capable of UV observations will be the World Space Observatory-UltraViolet (WSO-UV). In its characteristics, the WSO-UV mission is similar to that of HST, but all observing time will be dedicated to UV astronomy. In this work, we briefly outline the major prospects of the WSO-UV mission in terms of exoplanet studies. To the limits of the data and tools currently available, here we also compare the quality of key exoplanet data obtained in the far-UV and near-UV with HST (STIS and COS) to that expected to obtain with WSO-UV.
    Astrophysics and Space Science 11/2014; 354(1):9-19. DOI:10.1007/s10509-014-2027-3 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31-d orbit accompanied by a more massive outer companion in an eccentric (e=0.3) 223-d orbit. The outer giant planet, Kepler-424c, is not detected to transit the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets, the appear to be "lonely" (e.g. Steffen et al.~2012). This might be a consequence of a highly dynamical past of these systems. The Kepler-424 planetary system is a system with a hot Jupiter in a multiple system, similar to upsilon Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127; Gandolfi et al.~2013), Kepler-43 (KOI-135; Bonomo et al.~2012), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope and HET. For all systems we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have a heavy elements content between 20 and 120 M_Earth.
    The Astrophysical Journal 09/2014; 795(2). DOI:10.1088/0004-637X/795/2/151 · 6.28 Impact Factor

Full-text (3 Sources)

Available from
May 21, 2014