Article

Modeling and control of thermostatically controlled loads

01/2011;
Source: arXiv

ABSTRACT As the penetration of intermittent energy sources grows substantially, loads
will be required to play an increasingly important role in compensating the
fast time-scale fluctuations in generated power. Recent numerical modeling of
thermostatically controlled loads (TCLs) has demonstrated that such load
following is feasible, but analytical models that satisfactorily quantify the
aggregate power consumption of a group of TCLs are desired to enable controller
design. We develop such a model for the aggregate power response of a
homogeneous population of TCLs to uniform variation of all TCL setpoints. A
linearized model of the response is derived, and a linear quadratic regulator
(LQR) has been designed. Using the TCL setpoint as the control input, the LQR
enables aggregate power to track reference signals that exhibit step, ramp and
sinusoidal variations. Although much of the work assumes a homogeneous
population of TCLs with deterministic dynamics, we also propose a method for
probing the dynamics of systems where load characteristics are not well known.

0 Bookmarks
 · 
81 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Load modeling is one of the most uncertain areas in power system simulations. Having an accurate load model is important for power system planning and operation. Here, a review of load modeling and calibration techniques is given. This paper is not comprehensive, but covers some of the techniques commonly found in the literature. The advantages and disadvantages of each technique are outlined.
    North American Power Symposium (NAPS), 2011; 09/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the following four types: (a) optional loads that can be shed, e.g. light dimming; (b) deferrable loads that can be delayed, e.g. dishwashers; (c) controllable loads with inertia, e.g. thermostatically-controlled loads, whose task is to maintain an auxiliary characteristic (temperature) within pre-defined margins; and (d) storage devices that can alternate between charging and generating. Our analysis of the devices seeks to find their optimal price-taking control strategy under a given stochastic model of the distribution market.
    03/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently it has been shown that an aggregation of Thermostatically Controlled Loads (TCLs) can be utilized to provide fast regulating reserve service for power grids and the behavior of the aggregation can be captured by a stochastic battery with dissipation. In this paper, we address two practical issues associated with the proposed battery model. First, we address clustering of a heterogeneous collection and show that by finding the optimal dissipation parameter for a given collection, one can divide these units into few clusters and improve the overall battery model. Second, we analytically characterize the impact of imposing a no-short-cycling requirement on TCLs as constraints on the ramping rate of the regulation signal. We support our theorems by providing simulation results.
    10/2013;

Full-text (2 Sources)

View
28 Downloads
Available from
Jun 10, 2014