Sterile inflammation: sensing and reacting to damage.

Department of Internal Medicine, Comprehensive Cancer Center, University of Michigan, Michigan 48109, USA.
Nature Reviews Immunology 11/2010; 10(12):826-37. DOI: 10.1038/nri2873
Source: PubMed

ABSTRACT Over the past several decades, much has been revealed about the nature of the host innate immune response to microorganisms, with the identification of pattern recognition receptors (PRRs) and pathogen-associated molecular patterns, which are the conserved microbial motifs sensed by these receptors. It is now apparent that these same PRRs can also be activated by non-microbial signals, many of which are considered as damage-associated molecular patterns. The sterile inflammation that ensues either resolves the initial insult or leads to disease. Here, we review the triggers and receptor pathways that result in sterile inflammation and its impact on human health.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Response of immune and non-immune cells to pathogens infections is a very dynamic process. It involves the activation/modulation of many pathways leading to actin remodeling, membrane engulfing, phagocytosis, vesicle trafficking, phagolysosome formation, aiming at the destruction of the intruder. These sophisticated and rapid mechanisms rely on post-translational modifications (PTMs) of key host cells' factors, and bacteria have developed various strategies to manipulate them to favor their survival. Among these important PTMs, ubiquitination has emerged as a major mediator/modulator/regulator of host cells response to infections that pathogens have also learned to use for their own benefit. In this mini-review, we summarize our current knowledge about the normal functions of ubiquitination during host cell infection, and we detail its hijacking by model pathogens to escape clearance and to proliferate.
    Frontiers in Cellular and Infection Microbiology 02/2015; 5:17. DOI:10.3389/fcimb.2015.00017 · 2.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of transcutaneous electrical nerve stimulation (TENS) on immuno-inflammatory response was tested and the differences between electroacupuncture (EA) and TENS in immuno-inflammatory response in patients undergoing supratentorial craniotomy were explored. 51 patients received craniotomy were randomly divided into 3 groups: control (group C, n=18), EA (group A, n=19) and TENS (group T, n=14) groups. Blood samples were collected before anesthesia (T0) and 30 min (T1), 2 h (T2) and 4 h (T3) after induction of anesthesia to measure the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-8, IL-10, IgM, IgA and IgG. No significant difference existed between group A and group T during craniotomy. IgM and IgA decreased significantly in group C compared with groups A and T at T2 and T3 time points. Compared with group C, there were significant differences in TNF-α, IgM and IgA levels at T0 in groups A and T; no significant difference was found in the levels of IgG, IL-10 and IL-8. EA and TENS could reduce immunosuppression in patients undergoing supratentorial craniotomy and it has significance in choice of treatment in immunosuppressive therapy.
    International Journal of Clinical and Experimental Medicine 01/2015; 8(1):1156-61. · 1.42 Impact Factor
  • Source
    Dataset: srep07060


Available from