CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1

Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany.
Nucleic Acids Research (Impact Factor: 8.81). 11/2010; 39(6):2144-52. DOI: 10.1093/nar/gkq1175
Source: PubMed

ABSTRACT Topoisomerases class II (topoII) cleave and re-ligate the DNA double helix to allow the passage of an intact DNA strand through it. Chemotherapeutic drugs such as etoposide target topoII, interfere with the normal enzymatic cleavage/re-ligation reaction and create a DNA double-strand break (DSB) with the enzyme covalently bound to the 5'-end of the DNA. Such DSBs are repaired by one of the two major DSB repair pathways, non-homologous end-joining (NHEJ) or homologous recombination. However, prior to repair, the covalently bound topoII needs to be removed from the DNA end, a process requiring the MRX complex and ctp1 in fission yeast. CtIP, the mammalian ortholog of ctp1, is known to promote homologous recombination by resecting DSB ends. Here, we show that human cells arrested in G0/G1 repair etoposide-induced DSBs by NHEJ and, surprisingly, require the MRN complex (the ortholog of MRX) and CtIP. CtIP's function for repairing etoposide-induced DSBs by NHEJ in G0/G1 requires the Thr-847 but not the Ser-327 phosphorylation site, both of which are needed for resection during HR. This finding establishes that CtIP promotes NHEJ of etoposide-induced DSBs during G0/G1 phase with an end-processing function that is distinct to its resection function.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Double-strand DNA breaks (DSBs) resulting from metabolic cellular processes and external factors pose a serious threat to the stability of the genome, but the cells have molecular mechanisms for the efficient repair of this type of damage. In this review, we examine two main biochemical pathways of repairing the double-strand DNA breaks in eukaryotic cells—DNA strands nonhomologous end joining and homologous recombination between sister chromatids or chromatids of homologous chromosomes. Numerous data obtained recently for various eukaryotic cells suggest that there is a complex interplay between the main DSB repair pathways, which normally facilitates efficient repair and maintenance of the structural and functional integrity of the genome, but which, at the same time, under conditions of exposure to genotoxic factors may induce increased genomic instability.
    Cytology and Genetics 05/2014; 48(3):189-202. DOI:10.3103/S0095452714030062 · 0.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian genome is constantly challenged by exogenous and endogenous threats. Although much is known about the mechanisms that maintain DNA and RNA integrity, we know surprisingly little about the mechanisms that underpin the pathology and tissue specificity of many disorders caused by defective responses to DNA or RNA damage. Of the different types of endogenous damage, protein-linked DNA breaks (PDBs) are emerging as an important player in cancer development and therapy. PDBs can arise during the abortive activity of DNA topoisomerases, a class of enzymes that modulate DNA topology during several chromosomal transactions, such as gene transcription and DNA replication, recombination and repair. In this Review, we discuss the mechanisms underpinning topoisomerase-induced PDB formation and repair with a focus on their role during gene transcription and the development of tissue-specific cancers.
    Nature reviews. Cancer 02/2015; DOI:10.1038/nrc3892 · 37.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deficiency in repair of damaged DNA leads to genomic instability and is closely associated with tumorigenesis. Most DNA double-strand-breaks (DSBs) are repaired by two major mechanisms, homologous-recombination (HR) and non-homologous-end-joining (NHEJ). Although Akt has been reported to suppress HR, its role in NHEJ remains elusive. Here, we report that Akt phosphorylates XLF at Thr181 to trigger its dissociation from the DNA ligase IV/XRCC4 complex, and promotes its interaction with 14-3-3β leading to XLF cytoplasmic retention, where cytosolic XLF is subsequently degraded by SCF(β-TRCP) in a CKI-dependent manner. Physiologically, upon DNA damage, XLF-T181E expressing cells display impaired NHEJ and elevated cell death. Whereas a cancer-patient-derived XLF-R178Q mutant, deficient in XLF-T181 phosphorylation, exhibits an elevated tolerance of DNA damage. Together, our results reveal a pivotal role for Akt in suppressing NHEJ and highlight the tight connection between aberrant Akt hyper-activation and deficiency in timely DSB repair, leading to genomic instability and tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
    Molecular Cell 02/2015; DOI:10.1016/j.molcel.2015.01.005 · 14.46 Impact Factor