Article

Proteomic analysis of polyketide and nonribosomal peptide biosynthesis.

Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
Current opinion in chemical biology (Impact Factor: 8.3). 11/2010; 15(1):48-56. DOI: 10.1016/j.cbpa.2010.10.021
Source: PubMed

ABSTRACT Polyketides and non-ribosomal peptides are in a class of natural products important both as drug sources and as dangerous toxins and virulence factors. While studies over the last two decades have provided substantial characterization of the modular synthases that produce these compounds at the genetic level, their understanding at the protein level is much less understood. New proteomic platforms called an orthogonal active site identification system (OASIS) and proteomic interrogation of secondary metabolism (PrISM) have been developed to identify and quantify natural product synthase enzymes. Reviewed here, these tools offer the means to discover and analyze modular synthetic pathways that are limited by genetic techniques, opening the tools of contemporary proteomics to natural product sciences.

0 Bookmarks
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reversible covalent attachment of chemical probes to proteins has long been sought as a means to visualize and manipulate proteins. Here we demonstrate the full reversibility of post-translational custom pantetheine modification of Escherichia coli acyl carrier protein for visualization and functional studies. We use this iterative enzymatic methodology in vitro to reversibly label acyl carrier protein variants and apply these tools to NMR structural studies of protein-substrate interactions.
    Nature Methods 09/2012; 9(10):981-4. · 23.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
    Marine Drugs 01/2014; 12(6):3516-59. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microorganisms produce a remarkable selection of bioactive small molecules. The study and exploitation of these secondary metabolites have traditionally been restricted to the cultivable minority of bacteria. Rapid advances in meta-omics challenge this paradigm. Breakthroughs in metagenomic library methodologies, direct sequencing, single cell genomics, and natural product-specific bioinformatic tools now facilitate the retrieval of previously inaccessible biosynthetic gene clusters. Similarly, metaproteomic developments enable the direct study of biosynthetic enzymes from complex microbial communities. Additional methods within and beyond meta-omics are also in development. This review discusses recent reports in these arenas and how they can be utilized to characterize natural product biosynthetic gene clusters and pathways.
    Current Opinion in Biotechnology 05/2013; · 8.04 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
May 31, 2014