Article

Structure and function of APH(4)-Ia, a hygromycin B resistance enzyme.

Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada.
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2010; 286(3):1966-75. DOI: 10.1074/jbc.M110.194266
Source: PubMed

ABSTRACT The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 Å resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2″) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.

0 Bookmarks
 · 
163 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To obtain a selection marker gene functional in a thermophilic bacterium, Thermus thermophilus, an in vivo-directed evolutionary strategy was conducted on a hygromycin B phosphotransferase gene (hyg) from Streptomyces hygroscopicus. The expression of wild-type hyg in T. thermophilus provided hygromycin B (HygB) resistance up to 60 °C. Through selection of mutants showing HygB resistance at higher temperatures, eight amino acid substitutions and the duplication of three amino acids were identified. A variant containing seven substitutions and the duplication (HYG10) showed HygB resistance at a highest temperature of 74 °C. Biochemical and biophysical analyses of recombinant HYG and HYG10 revealed that HYG10 was in fact thermostabilized. Modeling of the three-dimensional structure of HYG10 suggests the possible roles of the various substitutions and the duplication on thermostabilization, of which three substitutions and the duplication located at the enzyme surface suggested that these mutations made the enzyme more hydrophilic and provided increased stability in aqueous solution.
    Bioscience Biotechnology and Biochemistry 11/2013; · 1.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as well as drug combinations and repurposing are highlighted as recent drug-discovery efforts towards fighting the increasing antibiotic resistance crisis.
    Future medicinal chemistry 07/2013; 5(11):1285-309. · 4.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies point to the prevalence of the evolutionary phenomenon of drastic structural transformation of protein domains while continuing to preserve their basic biochemical function. These transformations span a wide spectrum, including simple domains incorporated into larger structural scaffolds, changes in the structural core, major active site shifts, topological rewiring and extensive structural transmogrifications. Proteins from biological conflict systems, such as toxin-antitoxin, restriction-modification, CRISPR/Cas, polymorphic toxin and secondary metabolism systems commonly display such transformations. These include endoDNases, metal-independent RNases, deaminases, ADP ribosyltransferases, immunity proteins, kinases and E1-like enzymes. In eukaryotes such transformations are seen in domains involved in chromatin-related peptide recognition and protein/DNA-modification. Intense selective pressures from 'arms-race'-like situations in conflict and macromolecular modification systems could favor drastic structural divergence while preserving function.
    Current Opinion in Structural Biology 06/2014; 26C:92-103. · 8.75 Impact Factor