Article

Antitumor activity of capsaicin on human colon cancer cells in vitro and colo 205 tumor xenografts in vivo.

Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan.
Journal of Agricultural and Food Chemistry (Impact Factor: 2.91). 11/2010; 58(24):12999-3005. DOI: 10.1021/jf103335w
Source: PubMed

ABSTRACT Capsaicin was reported to inhibit cancer cell growth. The aim of this study was to evaluate the antitumor potential of capsaicin by studying antitumor activity in vitro as well as in vivo. The in vitro studies are to examine the effects of capsaicin on human colon cancer colo 205 cells after exposure to capsaicin. The results showed that capsaicin induced cytotoxic effects in a time- and dose-dependent manner and increased reactive oxygen species (ROS) and Ca(2+) but decreased the level of mitochondrial membrane potential (ΔΨ(m)) in colo 205 cells. Data from Western blotting analysis indicated that the levels of Fas, cytochrome c, and caspases were increased, leading to cell apoptosis. Capsaicin decreased the levels of anti-apoptotic proteins such as Bcl-2 and increased the levels of pro-apoptotic proteins such as Bax. Capsaicin-induced apoptosis in colo 205 cells was also done through the activations of caspase-8, -9 and -3. In vivo studies in immunodeficient nu/nu mice bearing colo 205 tumor xenografts showed that capsaicin effectively inhibited tumor growth. The potent in vitro and in vivo antitumor activities of capsaicin suggest that capsaicin might be developed for the treatment of human colon cancer.

0 Bookmarks
 · 
276 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Capsaicin is the major pungent ingredient in red peppers which is world widely consumed. Except its potent pain relieving efficacy as reported, capsaicin also exerted its antitumor activity in several tumor models. Here, we reported that capsaicin had a profound anti-proliferative effect on human colon cancer cells via inducing cell cycle G0/G1 phase arrest and apoptosis, which was associated with an increase of p21, Bax and cleaved PARP. The underlying mechanism of capsaicin's antitumor potency was mainly attributed to the stabilization and activation of p53. Capsaicin substantially prolonged the half-life of p53 and significantly elevated the transcriptional activity of p53. Through suppressing the interaction between p53 and MDM2, MDM2-mediated p53 ubiquitination was remarkably decreased after capsaicin treatment, which resulted in the stabilization and accumulation of p53. The results of p53-shRNA experiment further demonstrated that p53 knockdown severely impaired the sensitivity of tested cells to capsaicin, G0/G1 phase arrest and the apoptosis induced by capsaicin in p53-knockdown cells was also dramatically decreased, implicating the important role of p53 played in capsaicin's antitumor activity. In summary, our data suggested that capsaicin, or a related analogue, may have a role in the management of human colon cancer.
    International journal of biological sciences 01/2014; 10(3):285-295. · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Capsaicin is the active ingredient of chili peppers and gives them the characteristic pungent flavour. Understanding the actions of capsaicin led to the discovery of its receptor, transient receptor potential vanilloid subfamily member 1 (TRPV1). This receptor is found on key sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been studied in animal and human models for various indications. Capsaicin is unique among naturally occurring irritant compounds because the initial neuronal excitation evoked by it is followed by a long-lasting refractory period, during which the previously excited neurons are no longer responsive to a broad range of stimuli. This process known as defunctionalisation has been exploited for therapeutic use of capsaicin in various painful conditions. We reviewed different studies on mechanisms of action of capsaicin and its utility in different clinical conditions. Beneficial role of capsaicin has been reported in obesity, cardiovascular and gastrointestinal conditions, various cancers, neurogenic bladder, and dermatologic conditions. Various theories have been put forth to explain these effects. Interestingly many of these pharmacological actions are TRPV1 independent. This review is aimed at providing an overview of these mechanisms and to also present literature which contradicts the proposed beneficial effects of capsaicin. Most of the literature comes from animal studies and since many of these mechanisms are poorly understood, more investigation is required in human subjects.
    European journal of pharmacology 11/2013; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Capsaicin, the most abundant pungent molecule produced by pepper plants, represents an important ingredient in spicy foods consumed throughout the world. Studies have shown that capsaicin can relieve inflammation and has anti-proliferative effects on various human malignancies. Cholangiocarcinoma (CC) is a cancer disease with rising incidence. The prognosis remains dismal with little advance in treatment. The aim of the present study is to explore the anti-tumor activity of capsaicin in cultured human CC cell lines. Capsaicin effectively impaired cell proliferation, migration, invasion, epithelial to mesenchymal transition and growth of softagar colonies. Further, we show that capsaicin treatment of CC cells regulates the Hedgehog signaling pathway. Conclusion: Our results provide a basis for capsaicin to improve the prognosis of CCs in vivo and present new insights into the effectiveness and mode of action of capsaicin.
    PLoS ONE 01/2014; 9(4):e95605. · 3.73 Impact Factor

Full-text

View
9 Downloads
Available from