Article

Genome sequence of the Pea Aphid Acyrthosiphon pisum

PLoS Biology (Impact Factor: 12.69). 02/2010; 8(2):e1000313. DOI: 10.1371/journal.pbio.1000313
Source: OAI

ABSTRACT Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

Download full-text

Full-text

Available from: Toni Gabaldón, Aug 15, 2015
2 Followers
 · 
230 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about when, how or even if the wing development gene network elucidated in Drosophila is deployed in direct-developing insects. Here we identify the wing development genes (as determined in Drosophila) of the pea aphid (Acyrthosiphon pisum), which produces winged or unwinged adults in response to environmental cues. We find that the principal wing development genes studied in Drosophila are present in the aphid genome and that apterous and decapentaplegic exhibit duplications. We followed expression levels of 11 of these developmental genes at embryogenesis and across the nymphal instars. Six showed significant stage-specific expression level effects and apterous1 exhibited significantly different expression levels between winged and unwinged morphs, suggesting this gene acts proximately to realize polyphenic development.
    Insect Molecular Biology 03/2010; 19 Suppl 2(s2):63-73. DOI:10.1111/j.1365-2583.2009.00935.x · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The animal immune system provides defence against microbial infection, and the evolution of certain animal-microbial symbioses is predicted to involve adaptive changes in the host immune system to accommodate the microbial partner. For example, the reduced humoral immune system in the pea aphid Acyrthosiphon pisum, including an apparently non-functional immune deficiency (IMD) signalling pathway and absence of peptidoglycan recognition proteins (PGRPs), has been suggested to be an adaptation for the symbiosis with the bacterium Buchnera aphidicola. To investigate this hypothesis, the interaction between Buchnera and non-host cells, specifically cultured Drosophila S2 cells, was investigated. Microarray analysis of the gene expression pattern in S2 cells indicated that Buchnera triggered an immune response, including upregulated expression of genes for antimicrobial peptides via the IMD pathway with the PGRP-LC as receptor. Buchnera cells were readily taken up by S2 cells, but were subsequently eliminated over 1-2 days. These data suggest that Buchnera induces in non-host cells a defensive immune response that is deficient in its host. They support the proposed contribution of the Buchnera symbiosis to the evolution of the apparently reduced immune function in the aphid host.
    Proceedings of the Royal Society B: Biological Sciences 02/2011; 278(1704):333-8. DOI:10.1098/rspb.2010.1563 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Species interactions are fundamental to ecology. Classic studies of competition, predation, parasitism and mutualism between macroscopic organisms have provided a foundation for the discipline, but many of the most important and intimate ecological interactions are microscopic in scale. These microscopic interactions include those occurring between eukaryotic hosts and their microbial symbionts. Such symbioses, ubiquitous in nature, provide experimental challenges because the partners often cannot live outside the symbiosis. With respect to the symbionts, this precludes utilizing classical microbiological and genetic techniques that require in vitro cultivation. Genomics, however, has rapidly changed the study of symbioses. In this issue of Molecular Ecology, MacDonald et al. (2011), coupling symbiont whole-genome sequencing, experimental studies and metabolic modelling, provide novel insights into one of the best-studied symbioses, that between aphids and their obligate, nutrient-provisioning, intracellular bacteria, Buchnera aphidicola (Fig. 1). MacDonald and colleagues assessed variation in the ability of aphid–Buchnera pairs to thrive on artificial diets missing different amino acids. As shown previously (e.g. Wilkinson & Douglas 2003), aphid–Buchnera pairs can differ in their requirements for external sources of essential amino acids. Such phenotypic variation could result from differences in Buchnera’s amino acid biosynthetic capabilities or in the ability of aphids to interact with their symbionts. Whole-genome sequencing of the Buchnera genomes from four aphid lines with alternate nutritional phenotypes revealed that the environmental nutrients required by the aphid–Buchnera pairs could not be explained by sequence variation in the symbionts. Instead, a novel metabolic modelling approach suggested that much of the variation in nutritional phenotype could be explained by host variation in the capacity to provide necessary nutrient precursors to their symbionts. MacDonald et al.’s work complements a recent study by Vogel & Moran (2011), who through crossing experiments investigating the inheritance of a nutritional phenotype associated with a frameshift mutation in a Buchnera amino acid biosynthesis gene powerfully demonstrated that different host genotypes paired with the same symbiont genome could exhibit substantially different nutritional requirements.† Thus, while there is little doubt that Buchnera are evolutionarily central to the nutritional ecology of aphids, the current work by MacDonald et al. (2011) together with that of Vogel & Moran (2011) surprisingly demonstrates host dominance in defining and controlling the ecological niche of this particular symbiosis. Figure 1. Pea aphids and their bacterial symbionts. (a) A pea aphid mother and her clonal offspring. (b) Flourescence In Situ Hybridization (FISH) microscopy reveals the intimate association of aphid tissues (blue) with their obligate bacterial symbiont, Buchnera aphidicola (green), and a common facultative bacterial symbiont, Hamiltonella defensa (red). Photo by T. Barribeau, FISH image provided by A. Douglas. Download figure to PowerPoint
    Molecular Ecology 05/2011; 20(10):2038-40. DOI:10.1111/j.1365-294X.2011.05103.x · 5.84 Impact Factor
Show more