Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells.

Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America.
PLoS Genetics (Impact Factor: 8.17). 11/2010; 6(11):e1001192. DOI: 10.1371/journal.pgen.1001192
Source: PubMed

ABSTRACT Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig-like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle.
    The Journal of Immunology 11/2014; 193(12). DOI:10.4049/jimmunol.1401980 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Killer immunoglobulin-like receptors (KIRs) play an essential role in the regulation of natural killer (NK) activity, allowing NK cells to sense and respond to human leukocyte antigen (HLA) class I downregulation, an important hallmark for viral infections and tumor transformation. KIR and HLA genes are located on different chromosomes and KIR/HLA class I interaction represents an example of genetic epistasis in which the presence of receptor/ligand pairs is necessary for the induction of functional activity, while the presence of one in the absence of the other is not sufficient to influence NK cell function. Due to the high degree of HLA class I and KIR gene variability, KIR/KIR-ligand (KIR-L) interactions are extraordinarily diverse. KIR polymorphism arises from both haplotypic and allelic variations and was shaped by natural selection. KIR variability affects NK cell education influencing the KIR repertoire, KIR expression, the strength of KIR/KIR-L interactions and the capability to deliver signals. Moreover, it may influence NK cell function during infections, autoimmune diseases, pregnancy and allogeneic transplantation. This review summarizes the genetic and functional features of KIR/KIR-L interactions and gives an overview of their potential relevance in clinical studies.
    Tissue Antigens 12/2013; 82(6):363-73. DOI:10.1111/tan.12262 · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The proposition "This house agrees that the proper study of man is woman" was debated. For those negating the proposition, the alternative was that "animal models are useful in understanding the human feto-maternal relationship." Evidence for the proposition emphasized molecular and structural differences between the human and animal placenta and placentation. Evidence against the proposition and in favor of the alternative focused on functional and structural homologies, emphasizing that different molecules could be used in humans to achieve similar functional effects seen in animal (e.g., mouse) models. It was agreed that one always needed to test the validity of animal data by studying humans. The advantages and limitations of animal models were discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    Journal of Reproductive Immunology 12/2014; DOI:10.1016/j.jri.2014.10.004 · 2.37 Impact Factor

Preview (2 Sources)

1 Download
Available from

Laurent Abi-Rached