Article

Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia

Department of Cellular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Human Molecular Genetics (Impact Factor: 6.68). 11/2010; 20(3):510-27. DOI: 10.1093/hmg/ddq496
Source: PubMed

ABSTRACT Spinocerebellar ataxias 6 and 7 (SCA6 and SCA7) are neurodegenerative disorders caused by expansion of CAG repeats encoding polyglutamine (polyQ) tracts in CACNA1A, the alpha1A subunit of the P/Q-type calcium channel, and ataxin-7 (ATXN7), a component of a chromatin-remodeling complex, respectively. We hypothesized that finding new protein partners for ATXN7 and CACNA1A would provide insight into the biology of their respective diseases and their relationship to other ataxia-causing proteins. We identified 118 protein interactions for CACNA1A and ATXN7 linking them to other ataxia-causing proteins and the ataxia network. To begin to understand the biological relevance of these protein interactions within the ataxia network, we used OMIM to identify diseases associated with the expanded ataxia network. We then used Medicare patient records to determine if any of these diseases co-occur with hereditary ataxia. We found that patients with ataxia are at 3.03-fold greater risk of these diseases than Medicare patients overall. One of the diseases comorbid with ataxia is macular degeneration (MD). The ataxia network is significantly (P= 7.37 × 10(-5)) enriched for proteins that interact with known MD-causing proteins, forming a MD subnetwork. We found that at least two of the proteins in the MD subnetwork have altered expression in the retina of Ataxin-7(266Q/+) mice suggesting an in vivo functional relationship with ATXN7. Together these data reveal novel protein interactions and suggest potential pathways that can contribute to the pathophysiology of ataxia, MD, and diseases comorbid with ataxia.

Full-text

Available from: Natali Gulbahce, May 30, 2015
0 Followers
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Curation and interpretation of copy number variants identified by genome-wide testing is challenged by the large number of events harbored in each personal genome. Conventional determination of phenotypic relevance relies on patterns of higher frequency in affected individuals versus controls; however, an increasing amount of ascertained variation is rare or private to clans. Consequently, frequency data have less utility to resolve pathogenic from benign. One solution is disease-specific algorithms that leverage gene knowledge together with variant frequency to aid prioritization. We used large-scale resources including Gene Ontology, protein-protein interactions and other annotation systems together with a broad set of 83 genes with known associations to epilepsy to construct a pathogenicity score for the phenotype. We evaluated the score for all annotated human genes and applied Bayesian methods to combine the derived pathogenicity score with frequency information from our diagnostic laboratory. Analysis determined Bayes factors and posterior distributions for each gene. We applied our method to subjects with abnormal chromosomal microarray results and confirmed epilepsy diagnoses gathered by electronic medical record review. Genes deleted in our subjects with epilepsy had significantly higher pathogenicity scores and Bayes factors compared to subjects referred for non-neurologic indications. We also applied our scores to identify a recently validated epilepsy gene in a complex genomic region and to reveal candidate genes for epilepsy. We propose a potential use in clinical decision support for our results in the context of genome-wide screening. Our approach demonstrates the utility of integrative data in medical genomics.
    PLoS Genetics 09/2013; 9(9):e1003797. DOI:10.1371/journal.pgen.1003797 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Classical 'one-gene/one-disease' models cannot fully reconcile with the increasingly appreciated prevalence of complicated genotype-to-phenotype associations in human disease. Genes and gene products function not in isolation but as components of intricate networks of macromolecules (DNA, RNA, or proteins) and metabolites linked through biochemical or physical interactions, represented in 'interactome' network models as 'nodes' and 'edges', respectively. Accordingly, mechanistic understanding of human disease will require understanding of how disease-causing mutations affect systems or interactome properties. The study of 'edgetics' uncovers specific loss or gain of interactions (edges) to interpret genotype-to-phenotype relationships. We review how distinct genetic variants, the genotype, lead to distinct phenotypic outcomes, the phenotype, through edgetic perturbations in interactome networks altogether representing the 'edgotype'.
    Current opinion in genetics & development 11/2013; 23(6). DOI:10.1016/j.gde.2013.11.002 · 8.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurodegenerative disease characterized by loss of motor coordination and retinal degeneration with no current therapies in the clinic. The causative mutation is an expanded CAG repeat in the ataxin-7 gene whose mutant protein product causes cerebellar and brainstem degeneration and retinal cone-rod dystrophy. Here, we reduced the expression of both mutant and wildtype ataxin-7 in the SCA7 mouse retina by RNA interference and evaluated retinal function 23 weeks post injection. We observed a preservation of normal retinal function and no adverse toxicity with ≥50% reduction of mutant and wildtype ataxin-7 alleles. These studies address an important safety concern regarding non-allele specific silencing of ataxin-7 for SCA7 retinal therapy.
    PLoS ONE 04/2014; 9(4):e95362. DOI:10.1371/journal.pone.0095362 · 3.53 Impact Factor