The bioactivity and ion release of titanium-containing glass polyalkenoate cements for medical applications.

Inamori School of Engineering, Alfred University, Alfred, NY 14802, USA.
Journal of Materials Science Materials in Medicine (Impact Factor: 2.14). 11/2010; 22(1):19-28. DOI: 10.1007/s10856-010-4184-4
Source: PubMed

ABSTRACT The ion release profiles and bioactivity of a series of Ti containing glass polyalkenoate cements. Characterization revealed each material to be amorphous with a T(g) in the region of 650-660°C. The network connectivity decreased (1.83-1.35) with the addition of TiO(2) which was also evident with analysis by X-ray photoelectron spectroscopy. Ion release from cements were determined using atomic absorption spectroscopy for zinc (Zn(2+)), calcium (Ca(2+)), strontium (Sr(2+)), Silica (Si(4+)) and titanium (Ti(4+)). Ions such as Zn(2+) (0.1-2.0 mg/l), Ca(2+) (2.0-8.3 mg/l,) Sr(2+) (0.1-3.9 mg/l), and Si(4+) (14-90 mg/l) were tested over 1-30 days. No Ti(4+) release was detected. Simulated body fluid revealed a CaP surface layer on each cement while cell culture testing of cement liquid extracts with TW-Z (5 mol% TiO(2)) produced the highest cell viability (161%) after 30 days. Direct contact testing of discs resulted in a decrease in cell viability of the each cement tested.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A gallium (Ga) glass series (0.48SiO(2)-0.40ZnO-0.12CaO, with 0.08 mol% substitution for ZnO) was developed to formulate a Ga-containing Glass Polyalkenoate Cement (GPC) series. Network connectivity (NC) and X-ray Photoelectron Spectroscopy (XPS) was employed to investigate the role of Ga(3+) in the glass, where it is assumed to act as a network modifier. Ga-GPC series was formulated with E9 and E11 polyacrylic acid (PAA) at 50, 55 and 60 wt% additions. E11 working times (T(w)) ranged from 68 to 96 s (Lcon.) and 106 s for the Ga-GPCs (LGa-1 and LGa-2). Setting times (T(s)) ranged from 104 to 226 s (Lcon.) and 211 s for LGa-1 and LGa-2. Compression (σc) and biaxial flexural (σf) testing were conducted where Lcon. increased from 62 to 68 MPa, LGa-1 from 14 to 42 MPa and LGa-2 from 20 to 47 MPa in σc over 1-30 days. σf testing revealed that Lcon. increased from 29 to 42 MPa, LGa-1 from 7 to 32 MPa and LGa-2 from 12 to 36 MPa over 1-30 days.
    Journal of Materials Science Materials in Medicine 06/2012; 23(8):1823-33. · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to investigate the solubility of a series of titanium (TiO2) containing bioactive glasses and their subsequent effect on cell viability. Five glasses were synthesized in the composition range SiO2-Na2O-CaO with 5mol% increments TiO2 substituted for SiO2. Glass solubility was investigated with respect to 1.) exposed surface area, 2.) particle size, 3.) incubation time and 4.) compositional effects. Ion release profiles showed that sodium (Na+) presented high release rates after 1 day and were unchanged between 7 and 14 days. Calcium (Ca2+) release presented a significant change at each time period and was also composition dependant, where a reduction in Ca2+ release is observed with an increase in TiO2 concentration. Silica (Si4+) release did not present any clear trends while no titanium (Ti4+) was released. Cell numbers were found to increase up to 44%, compared to the growing control population, with a reduction in particle size and with the inclusion of TiO2 in the glass composition.
    Journal of Biomedical Materials Research Part A 05/2014; · 2.83 Impact Factor