Article

CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system.

Institute of Clinical Neuroanatomy, Johann Wolfgang Goethe-University, 60590 Frankfurt/Main, Germany.
Acta Neuropathologica (Impact Factor: 9.78). 11/2010; 121(4):445-58. DOI: 10.1007/s00401-010-0774-y
Source: PubMed

ABSTRACT Recent studies demonstrated that primary immune responses can be induced within the brain depending on vessel-associated cells expressing markers of dendritic cells (DC). Using mice transcribing the green fluorescent protein (GFP) under the promoter of the DC marker CD11c, we determined the distribution, phenotype, and source of CD11c+ cells in non-diseased brains. Predilection areas of multiple sclerosis (MS) lesions (periventricular area, adjacent fibre tracts, and optical nerve) were preferentially populated by CD11c+ cells. Most CD11c+ cells were located within the juxtavascular parenchyma rather than the perivascular spaces. Virtually all CD11c+ cells co-expressed ionized calcium-binding adaptor molecule 1 (IBA-1), CD11b, while detectable levels of major histocompatibility complex II (MHC-II) in non-diseased mice was restricted to CD11c+ cells of the choroid plexus. Cellular processes project into the glia limitans which may allow transport and/or presentation of intraparenchymal antigens to extravasated T cells in perivascular spaces. In chimeric mice bearing CD11c-GFP bone marrow, fluorescent cells appeared in the CNS between 8 and 12 weeks after transplantation. In organotypic slice cultures from CD11c-GFP mice, the number of fluorescent cells strongly increased within 72 h. Strikingly, using anti-CD209, an established marker for human DC, a similar population was detected in human brains. Thus, we show for the first time that CD11c+ cells can not only be recruited from the blood into the parenchyma, but also develop from an intraneural precursor in situ. Dysbalance in their recruitment/development may be an initial step in the pathogenesis of chronic (autoimmune) neuroinflammatory diseases such as MS.

1 Follower
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence from experimental autoimmune encephalomyelitis (EAE) suggests that CNS-infiltrating dendritic cells (DCs) are crucial for restimulation of coinfiltrating T cells. Here we systematically quantified and visualized the distribution and interaction of CNS DCs and T cells during EAE. We report marked periventricular accumulation of DCs and myelin-specific T cells during EAE disease onset prior to accumulation in the spinal cord, indicating that the choroid plexus-CSF axis is a CNS entry portal. Moreover, despite emphasis on spinal cord inflammation in EAE and in correspondence with MS pathology, inflammatory lesions containing interacting DCs and T cells are present in specific brain regions.
    Journal of Neuroimmunology 09/2014; 277(1-2). DOI:10.1016/j.jneuroim.2014.09.016 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are a heterogeneous group of professional antigen presenting cells that lie in a nexus between innate and adaptive immunity because they recognize and respond to danger signals and subsequently initiate and regulate effector T-cell responses. Initially thought to be absent from the CNS, both plasmacytoid and conventional DCs as well as DC precursors have recently been detected in several CNS compartments where they are seemingly poised for responding to injury and pathogens. Additionally, monocyte-derived DCs rapidly accumulate in the inflamed CNS where they, along with other DC subsets, may function to locally regulate effector T-cells and/or carry antigens to CNS-draining cervical lymph nodes. In this review we highlight recent research showing that (a) distinct inflammatory stimuli differentially recruit DC subsets to the CNS; (b) DC recruitment across the blood-brain barrier (BBB) is regulated by adhesion molecules, growth factors, and chemokines; and (c) DCs positively or negatively regulate immune responses in the CNS.
    Advances in Experimental Medicine and Biology 01/2012; 946:309-33. DOI:10.1007/978-1-4614-0106-3_18 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the central nervous system (CNS) is considered to be an immunoprivileged site, it is susceptible to a host of autoimmune as well as neuroinflammatory disorders owing to recruitment of immune cells across the blood-brain barrier into perivascular and parenchymal spaces. Dendritic cells (DCs), which are involved in both primary and secondary immune responses, are the most potent immune cells in terms of antigen uptake and processing as well as presentation to T cells. In light of the emerging importance of DC traficking into the CNS, these cells represent good candidates for targeted immunotherapy against various neuroinflammatory diseases. This review focuses on potential physiological events and receptor interactions between DCs and the microvascular endothelial cells of the brain as they transmigrate into the CNS during degeneration and injury. A clear understanding of the underlying mechanisms involved in DC migration may advance the development of new therapies that manipulate these mechanistic properties via pharmacologic intervention. Furthermore, therapeutic validation should be in concurrence with the molecular imaging techniques that can detect migration of these cells in vivo. Since the use of noninvasive methods to image migration of DCs into CNS has barely been explored, we highlighted potential molecular imaging techniques to achieve this goal. Overall, information provided will bring this important leukocyte population to the forefront as key players in the immune cascade in the light of the emerging contribution of DCs to CNS health and disease.
    Journal of Neuroimmune Pharmacology 08/2011; 7(1):74-94. DOI:10.1007/s11481-011-9302-7 · 3.17 Impact Factor