Article

Synthesis of Heterogeneous Li(4)Ti(5)O(12) Nanostructured Anodes with Long-Term Cycle Stability.

Ceramic Research & Development Division, Dongil Technology Ltd, #215-6, Bukyang-dong, Hwasung, 445-854 Korea
Nanoscale Research Letters (Impact Factor: 2.52). 01/2010; 5(10):1585-1589. DOI: 10.1007/s11671-010-9680-4
Source: PubMed

ABSTRACT The 0D-1D Lithium titanate (Li(4)Ti(5)O(12)) heterogeneous nanostructures were synthesized through the solvothermal reaction using lithium hydroxide monohydrate (Li(OH)·H(2)O) and protonated trititanate (H(2)Ti(3)O(7)) nanowires as the templates in an ethanol/water mixed solvent with subsequent heat treatment. A scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM) were used to reveal that the Li(4)Ti(5)O(12) powders had 0D-1D heterogeneous nanostructures with nanoparticles (0D) on the surface of wires (1D). The composition of the mixed solvents and the volume ratio of ethanol modulated the primary particle size of the Li(4)Ti(5)O(12) nanoparticles. The Li(4)Ti(5)O(12) heterogeneous nanostructures exhibited good capacity retention of 125 mAh/g after 500 cycles at 1C and a superior high-rate performance of 114 mAh/g at 20C.

0 Bookmarks
 · 
123 Views
  • Journal of Clinical Psychology 02/1954; 10(1):101-2. · 2.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lithium-ion batteries are supposed to be a key method to make a more efficient use of energy. In the past decade, nanostructured electrode materials have been extensively studied and have presented the opportunity to achieve superior performance for the next-generation batteries which require higher energy and power densities and longer cycle life. In this article, we reviewed recent research activities on selective crystallization of inorganic materials into nanostructured electrodes for lithium-ion batteries and discuss how selective crystallization can improve the electrode performance of materials; for example, selective exposure of surfaces normal to the ionic diffusion paths can greatly enhance the ion conductivity of insertion-type materials; crystallization of alloying-type materials into nanowire arrays has proven to be a good solution to the electrode pulverization problem; and constructing conversion-type materials into hollow structures is an effective approach to buffer the volume variation during cycling. The major goal of this review is to demonstrate the importance of crystallization in energy storage applications.
    Nanoscale Research Letters 02/2012; 7:149. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lithium-ion (Li-ion) batteries with high energy and power are promising power sources for electric vehicles (including hybrid electric vehicles). One of the challenges is to develop advanced anode materials with high safety, good cycling stability, and fast charge/discharge capabilities. The Li4Ti5O12 spinel is a state-of-the-art Li-ion battery anode material owing to its outstanding safety and excellent structural stability during cycling. However, Li4Ti5O12 large particles still suffer from low ionic conductivity and electronic conductivity, which result in poor rate performance and inhibit its wide practical application. Developing nanostructured electrode materials is one of the most attractive strategies to dramatically enhance the electrochemical performance, including capacity, rate capability, and cycling life. Currently, extensive efforts have been devoted to developing nanostructured Li4Ti5O12 and Li4Ti5O12/carbon nanocomposites to improve their rate performance for high-power Li-ion batteries. In this article, we review the recent progress in developing nanostructured Li4Ti5O12 and Li4Ti5O12/carbon nanocomposites and discuss the benefits of nanostructure and carbon incorporation for the electrochemical performance of Li4Ti5O12-based anodes.
    Nanotechnology Reviews. 01/2014; 3(2):161-175.

Full-text (2 Sources)

Download
57 Downloads
Available from
May 17, 2014