Down-regulation of microRNAs 222/221 in acute myelogenous leukemia with deranged core-binding factor subunits.

Dipartimento di Biologia e Genetica per le Scienze Mediche, Facoltà di Medicina, Università degli Studi di Milano, Milan, Italy.
Neoplasia (New York, N.Y.) (Impact Factor: 5.48). 11/2010; 12(11):866-76.
Source: PubMed

ABSTRACT Core-binding factor leukemia (CBFL) is a subgroup of acute myeloid leukemia (AML) characterized by genetic mutations involving the subunits of the core-binding factor (CBF). The leukemogenesis model for CBFL posits that one, or more, gene mutations inducing increased cell proliferation and/or inhibition of apoptosis cooperate with CBF mutations for leukemia development. One of the most common mutations associated with CBF mutations involves the KIT receptor. A high expression of KIT is a hallmark of a high proportion of CBFL. Previous studies indicate that microRNA (MIR) 222/221 targets the 3' untranslated region of the KIT messenger RNA and our observation that AML1 can bind the MIR-222/221 promoter, we hypothesized that MIR-222/221 represents the link between CBF and KIT. Here, we show that MIR-222/221 expression is upregulated after myeloid differentiation of normal bone marrow AC133(+) stem progenitor cells. CBFL blasts with either t(8;21) or inv(16) CBF rearrangements with high expression levels of KIT (CD117) display a significantly lower level of MIR-222/221 expression than non-CBFL blasts. Consistently, we found that the t(8;21) AML1-MTG8 fusion protein binds the MIR-222/221 promoter and induces transcriptional repression of a MIR-222/221-LUC reporter. Because of the highly conserved sequence homology, we demonstrated concomitant MIR-222/221 down-regulation and KIT up-regulation in the 32D/WT1 mouse cell model carrying the AML1-MTG16 fusion protein. This study provides the first hint that CBFL-associated fusion proteins may lead to up-regulation of the KIT receptor by down-regulating MIR-222/221, thus explaining the concomitant occurrence of CBF genetic rearrangements and overexpression of wild type or mutant KIT in AML.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
    Neoplasia (New York, N.Y.) 12/2012; 14(12):1278-89. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein-coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic database that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.
    Neoplasia (New York, N.Y.) 12/2011; 13(12):1183-93. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Valproic acid (VPA) exhibits important pharmacological properties but has been reported to trigger side effects, notably on the hematological system. We previously reported that VPA affects hematopoietic homeostasis by inhibiting erythroid differentiation and promoting myeloid and megakaryocyte differentiation. Here, we analyzed the effect of VPA on regulatory factors involved in erythro-megakaryocytic differentiation pathways, including transcription factors and microRNAs (miRs). We demonstrate that VPA inhibited erythroid differentiation in erythropoietin (Epo)-stimulated TF1 leukemia cells and CD34(+)/hematopoietic stem cells (HSCs) and in aclacinomycin-(Acla)-treated K562 cells. miR-144/451 gene expression was decreased in all erythroid and megakaryocyte models in correlation with GATA-1 inhibition. In Epo-stimulated CD34(+)/HSCs, VPA induced the expression of the ETS family transcription factors PU.1, ETS-1, GABP-α, Fli-1 and GATA-2, which are all known to be negative regulators of erythropoiesis, while it promoted the megakaryocytic pathway. PU.1 and ETS-1 expression were induced in correlation with miR-155 inhibition; however, the GATA-1/PU.1 interaction was promoted. Using megakaryoblastic Meg-01 cells, we demonstrated that VPA induced megakaryocyte morphological features and CD61 expression. GATA-2 and miR-27a expression were increased in correlation with a decrease in RUNX1 mRNA expression, suggesting megakaryocyte differentiation. Finally, by using valpromide and the Class I HDACi MS-275, we validated that the well-described HDACi activity of VPA is not required in the inhibitory effect on erythropoiesis. Overall, this report shows that VPA modulates the erythro-megakaryocytic differentiation program through regulatory micro-networks involving GATA, ETS family transcription factors and miRNAs, notably the GATA-1/miR-144/451 axis.
    Biochemical pharmacology. 09/2014;


Available from
May 22, 2014