Down-regulation of microRNAs 222/221 in acute myelogenous leukemia with deranged core-binding factor subunits.

Dipartimento di Biologia e Genetica per le Scienze Mediche, Facoltà di Medicina, Università degli Studi di Milano, Milan, Italy.
Neoplasia (New York, N.Y.) (Impact Factor: 5.48). 11/2010; 12(11):866-76.
Source: PubMed

ABSTRACT Core-binding factor leukemia (CBFL) is a subgroup of acute myeloid leukemia (AML) characterized by genetic mutations involving the subunits of the core-binding factor (CBF). The leukemogenesis model for CBFL posits that one, or more, gene mutations inducing increased cell proliferation and/or inhibition of apoptosis cooperate with CBF mutations for leukemia development. One of the most common mutations associated with CBF mutations involves the KIT receptor. A high expression of KIT is a hallmark of a high proportion of CBFL. Previous studies indicate that microRNA (MIR) 222/221 targets the 3' untranslated region of the KIT messenger RNA and our observation that AML1 can bind the MIR-222/221 promoter, we hypothesized that MIR-222/221 represents the link between CBF and KIT. Here, we show that MIR-222/221 expression is upregulated after myeloid differentiation of normal bone marrow AC133(+) stem progenitor cells. CBFL blasts with either t(8;21) or inv(16) CBF rearrangements with high expression levels of KIT (CD117) display a significantly lower level of MIR-222/221 expression than non-CBFL blasts. Consistently, we found that the t(8;21) AML1-MTG8 fusion protein binds the MIR-222/221 promoter and induces transcriptional repression of a MIR-222/221-LUC reporter. Because of the highly conserved sequence homology, we demonstrated concomitant MIR-222/221 down-regulation and KIT up-regulation in the 32D/WT1 mouse cell model carrying the AML1-MTG16 fusion protein. This study provides the first hint that CBFL-associated fusion proteins may lead to up-regulation of the KIT receptor by down-regulating MIR-222/221, thus explaining the concomitant occurrence of CBF genetic rearrangements and overexpression of wild type or mutant KIT in AML.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The t(8;21)(q22;q22) rearrangement represents the most common chromosomal translocation in acute myeloid leukemia (AML). It results in a transcript encoding for the fusion protein AML1-ETO (AE) with transcription factor activity. AE is considered to be an attractive target for treating t(8;21) leukemia. However, AE expression alone is insufficient to cause transformation, and thus the potential of such therapy remains unclear. Several genes are deregulated in AML cells, including KIT, which encodes a tyrosine kinase receptor. Here we show that AML cells transduced with shRNA vector targeting AE mRNAs have a dramatic decrease in growth rate, which is caused by induction of apoptosis and deregulation of the cell cycle. A reduction in KIT mRNA levels was also observed in AE silenced cells, but silencing KIT expression reduced cell growth but did not induce apoptosis. Transcription profiling of cells that escape cell death revealed activation of a number of signaling pathways involved in cell survival and proliferation. In particular, we find that the ERK2 (MAPK1) protein could mediate activation of 23 out of 29 (79%) of these upregulated pathways and thus may be regarded as the key player in establishing the t(8;21)-positive leukemic cells resistant to AE suppression.Leukemia accepted article peview online, 14 April 2014. doi:10.1038/leu.2014.130.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 04/2014; · 10.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Valproic acid (VPA) exhibits important pharmacological properties but has been reported to trigger side effects, notably on the hematological system. We previously reported that VPA affects hematopoietic homeostasis by inhibiting erythroid differentiation and promoting myeloid and megakaryocyte differentiation. Here, we analyzed the effect of VPA on regulatory factors involved in erythro-megakaryocytic differentiation pathways, including transcription factors and microRNAs (miRs). We demonstrate that VPA inhibited erythroid differentiation in erythropoietin (Epo)-stimulated TF1 leukemia cells and CD34(+)/hematopoietic stem cells (HSCs) and in aclacinomycin-(Acla)-treated K562 cells. miR-144/451 gene expression was decreased in all erythroid and megakaryocyte models in correlation with GATA-1 inhibition. In Epo-stimulated CD34(+)/HSCs, VPA induced the expression of the ETS family transcription factors PU.1, ETS-1, GABP-α, Fli-1 and GATA-2, which are all known to be negative regulators of erythropoiesis, while it promoted the megakaryocytic pathway. PU.1 and ETS-1 expression were induced in correlation with miR-155 inhibition; however, the GATA-1/PU.1 interaction was promoted. Using megakaryoblastic Meg-01 cells, we demonstrated that VPA induced megakaryocyte morphological features and CD61 expression. GATA-2 and miR-27a expression were increased in correlation with a decrease in RUNX1 mRNA expression, suggesting megakaryocyte differentiation. Finally, by using valpromide and the Class I HDACi MS-275, we validated that the well-described HDACi activity of VPA is not required in the inhibitory effect on erythropoiesis. Overall, this report shows that VPA modulates the erythro-megakaryocytic differentiation program through regulatory micro-networks involving GATA, ETS family transcription factors and miRNAs, notably the GATA-1/miR-144/451 axis.
    Biochemical pharmacology. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic analyses estimated that the proportion of the genome encoding proteins corresponds to approximately 1.5%, while at least 66% are transcribed, suggesting that many non-coding DNA-regions generate non-coding RNAs (ncRNAs). The relevance of these ncRNAs in biological, physiological as well as in pathological processes increased over the last two decades with the understanding of their implication in complex regulatory networks. This review particularly focuses on the involvement of two large families of ncRNAs, namely microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of hematopoiesis. To date, miRNAs have been widely studied, leading to a wealth of data about processing, regulation and mechanisms of action and more specifically, their involvement in hematopoietic differentiation. Notably, the interaction of miRNAs with the regulatory network of transcription factors is well documented whereas roles, regulation and mechanisms of lncRNAs remain largely unexplored in hematopoiesis; this review gathers current data about lncRNAs as well as both potential and confirmed roles in normal and pathological hematopoiesis.
    International Journal of Molecular Sciences 01/2013; 14(7):14744-70. · 2.46 Impact Factor


Available from
May 22, 2014