Article

Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence.

Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
Oncogene (Impact Factor: 8.56). 11/2010; 30(12):1489-96. DOI: 10.1038/onc.2010.520
Source: PubMed

ABSTRACT Approximately 20% of tumors contain activating mutations in the RAS family of oncogenes. As tumors progress to higher grades of malignancy, the expression of oncogenic RAS has been reported to increase, leading to an oncogene-induced senescence (OIS) response. Evasion of this senescence barrier is a hallmark of advanced tumors indicating that OIS serves a critical tumor-suppressive function. Induction of OIS has been attributed to either RAS-mediated production of reactive oxygen species (ROS) or to induction of a DNA damage response (DDR). However, functional links between these two processes in triggering the senescent phenotype have not been explicitly described. Our previous work has shown that, in cultured untransformed cells, preventing elimination of oxidized guanine deoxyribonucleotides, which was achieved by suppressing expression of the cellular 8-oxo-dGTPase, human MutT homolog 1 (MTH1), sufficed to induce a DDR as well as premature senescence. Here, we demonstrate that overexpression of MTH1 can prevent the oncogenic H-RAS-induced DDR and attendant premature senescence, although it does not affect the observed elevation in ROS levels produced by RAS oncoprotein expression. Conversely, we find that loss of MTH1 preferentially induces an in vitro proliferation defect in tumorigenic cells overexpressing oncogenic RAS. These results indicate that the guanine nucleotide pool is a critical target for intracellular ROS produced by oncogenic RAS and that RAS-transformed cells require robust MTH1 expression to proliferate.

0 Bookmarks
 · 
97 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We face an impending crisis in our ability to treat infectious disease brought about by the emergence of antibiotic-resistant pathogens and a decline in the development of new antibiotics. Urgent action is needed. This review focuses on a less well-understood aspect of antibiotic action: the complex metabolic events that occur subsequent to the interaction of antibiotics with their molecular targets and play roles in antibiotic lethality. Independent lines of evidence from studies of the action of bactericidal antibiotics on diverse bacteria collectively suggest that the initial interactions of drugs with their targets cannot fully account for the antibiotic lethality and that these interactions elicit the production of reactive oxidants including reactive oxygen species that contribute to bacterial cell death. Recent challenges to this concept are considered in the context of the broader literature of this emerging area of research. Possible ways that this new knowledge might be exploited to improve antibiotic therapy are also considered. Expected final online publication date for the Annual Review of Pharmacology and Toxicology Volume 55 is January 06, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Pharmacology 09/2014; 55(1). DOI:10.1146/annurev-pharmtox-010814-124712 · 18.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: In this study, we aimed to search for noninvasive predictive biomarkers for prenatal diagnosis of Down’s syndrome (DS). Methods: Maternal serum samples from five DS-affected pregnant women and five DS-unaffected women were analyzed by 2D gel electrophoresis and MALDI-TOF mass spectrometry to screen for potential predictive biomarkers of DS. Then, differential levels of dGTPase, β2-glycoprotein I (β2-GPI), complement factor H-related protein 1 precursor (CFHR1) and kininogen 1 isoform 2 were further verified by western blotting tests in another independent group. Results: Statistical analysis results revealed 29 protein spots whose levels differed significantly in the DS-affected pregnancies group. Of these, the eight most differentially expressed in DP were identified successfully. Among these, levels of dGTPase, CFHR1 and kininogen 1 were elevated significantly, whereas β2-GPI was reduced in DP. Discussion: These preliminarily verified proteins might serve as potential predictive biomarkers for DS-affected pregnancies.
    Expert Review of Proteomics 11/2014; DOI:10.1586/14789450.2015.979796 · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel insights into oncogene-evoked metabolic reprogramming, replication and oxidative stress, with implications for mechanisms of tumorigenesis and potential targeting of oncogene addiction.
    Molecular Oncology 11/2014; DOI:10.1016/j.molonc.2014.11.001 · 5.94 Impact Factor

Full-text

Download
12 Downloads
Available from
Jul 22, 2014