Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction.

Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA.
Nature Genetics (Impact Factor: 29.65). 11/2010; 42(12):1068-76. DOI: 10.1038/ng.716
Source: PubMed

ABSTRACT The QRS interval, from the beginning of the Q wave to the end of the S wave on an electrocardiogram, reflects ventricular depolarization and conduction time and is a risk factor for mortality, sudden death and heart failure. We performed a genome-wide association meta-analysis in 40,407 individuals of European descent from 14 studies, with further genotyping in 7,170 additional Europeans, and we identified 22 loci associated with QRS duration (P < 5 × 10(-8)). These loci map in or near genes in pathways with established roles in ventricular conduction such as sodium channels, transcription factors and calcium-handling proteins, but also point to previously unidentified biologic processes, such as kinase inhibitors and genes related to tumorigenesis. We demonstrate that SCN10A, a candidate gene at the most significantly associated locus in this study, is expressed in the mouse ventricular conduction system, and treatment with a selective SCN10A blocker prolongs QRS duration. These findings extend our current knowledge of ventricular depolarization and conduction.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The electrical activity of the heart depends on the correct interplay between key transcription factors and cis-regulatory elements, which together regulate the proper heterogeneous expression of genes encoding for ion channels and other proteins. Genome-wide association studies of ECG parameters implicated genetic variants in the genes for these factors and ion channels modulating conduction and depolarization. Here, we review recent insights into the regulation of localized expression of ion channel genes and the mechanism by which a single-nucleotide polymorphism (SNP) associated with alterations in cardiac conduction patterns in humans affects the transcriptional regulation of the sodium channel genes, SCN5A and SCN10A. The identification of regulatory elements of electrical activity genes helps to explain the impact of genetic variants in non-coding regulatory DNA sequences on regulation of cardiac conduction and the predisposition for cardiac arrhythmias.
    Trends in cardiovascular medicine 12/2013; DOI:10.1016/j.tcm.2013.09.001 · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper function of an organized Cardiac Conduction System (CCS) is vital to the survival of metazoans ranging from fly to man. The routine use of non-invasive electrocardiogram measures in the diagnosis and monitoring of cardiovascular health has established a trove of reliable CCS functional data in both normal and diseased cardiac states. Recent combination of echocardiogram (ECG) data with genome-wide association studies has identified genomic regions implicated in ECG variability which impact CCS function. In this study, we review the substantial recent progress in this area, highlighting the identification of novel loci, confirming the importance of previously implicated loci in CCS function, and exploring potential links between genes with important roles in developmental processes and variation in function of the CCS.
    Birth Defects Research Part A Clinical and Molecular Teratology 06/2011; 91(6):578-85. DOI:10.1002/bdra.20800 · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: The aim of this study was to investigate whether genetics may be considered an additional risk factor for health in isolated and remote populations, compared with their populations of origin. In this study, two remote island population samples from Croatia (from the islands of Vis and the Korcula) were compared with mainland controls from the coastal city of Split. The analyses focused on gout, hyperuricaemia and osteoarthritis, as examples of complex, multifactorial diseases. METHODS: A total of 3006 examinees from all three sites in Dalmatia, Croatia were included in the descriptive part of the study, within a large-scale project of 10 001 Dalmatians. Additionally, a subset of 2428 subjects was genotyped and information on three genomic loci was used in this study. All three loci belong to SLC2A9 gene, considered to have a major role in the regulation of serum uric acid concentration (rs6449213, rs1014290 and rs737267). RESULTS: There was a much a higher prevalence of gout in the isolated populations compared with the mainland sample (3.3% in Vis, 2.2% in Korcula and 1.7% in Split, after age standardization). Furthermore, standardized prevalence of hyperuricaemia (defined as serum uric acid ≥403 mmol/L) was 9.9% in Vis, 5.6% in Korcula and 6.1% in Split. Analysis of the allele frequencies for the three loci of SLC2A9 suggested that in all three instances the prevalence of deleterious genotypes was highest in Vis, followed by Korcula, which had higher or comparable prevalence to the city of Split. Multivariate analysis, adjusted for the main confounder effects indicated that those on the island of Vis, which has the higher degree of isolation, had significantly higher odds ratio for both hyperuricaemia (odds ratio 1.90 95% confidence intervals [1.36-2.64]) and osteoarthritis, but not gout (3.37 [2.14-5.32]). The difference between Split and Korcula included only greater odds for osteoarthritis (1.92 [1.20-3.06]). CONCLUSIONS: Isolated and remote populations that maintain a sufficient level of genetic isolation may suffer not only from consequences of geographic and social isolation, but their population genetic structure may also further contribute to poorer health status and outcomes.
    Rural and remote health 13(1):2153. · 0.87 Impact Factor