Article

Predicted risks of second malignant neoplasm incidence and mortality due to secondary neutrons in a girl and boy receiving proton craniospinal irradiation

Department of Radiation Physics, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA.
Physics in Medicine and Biology (Impact Factor: 2.92). 11/2010; 55(23):7067-80. DOI: 10.1088/0031-9155/55/23/S08
Source: PubMed

ABSTRACT The purpose of this study was to compare the predicted risks of second malignant neoplasm (SMN) incidence and mortality from secondary neutrons for a 9-year-old girl and a 10-year-old boy who received proton craniospinal irradiation (CSI). SMN incidence and mortality from neutrons were predicted from equivalent doses to radiosensitive organs for cranial, spinal and intracranial boost fields. Therapeutic proton absorbed dose and equivalent dose from neutrons were calculated using Monte Carlo simulations. Risks of SMN incidence and mortality in most organs and tissues were predicted by applying risks models from the National Research Council of the National Academies to the equivalent dose from neutrons; for non-melanoma skin cancer, risk models from the International Commission on Radiological Protection were applied. The lifetime absolute risks of SMN incidence due to neutrons were 14.8% and 8.5%, for the girl and boy, respectively. The risks of a fatal SMN were 5.3% and 3.4% for the girl and boy, respectively. The girl had a greater risk for any SMN except colon and liver cancers, indicating that the girl's higher risks were not attributable solely to greater susceptibility to breast cancer. Lung cancer predominated the risk of SMN mortality for both patients. This study suggests that the risks of SMN incidence and mortality from neutrons may be greater for girls than for boys treated with proton CSI.

0 Bookmarks
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prediction of late effects after radiotherapy in organs outside a treatment field requires accurate estimations of out-of-field dose. However, out-of-field dose is not calculated accurately by commercial treatment planning systems (TPSs). The purpose of this study was to develop and test an analytical model for out-of-field dose during craniospinal irradiation (CSI) from photon beams produced by a linear accelerator. In two separate evaluations of the model, we measured absorbed dose for a 6 MV CSI using thermoluminescent dosimeters placed throughout an anthropomorphic phantom and fit the measured data to an analytical model of absorbed dose versus distance outside of the composite field edge. These measurements were performed in two separate clinics-the University of Texas MD Anderson Cancer Center (MD Anderson) and the American University of Beirut Medical Center (AUBMC)-using the same phantom but different linear accelerators and TPSs commissioned for patient treatments. The measurement at AUBMC also included in-field locations. Measured dose values were compared to those predicted by TPSs and parameters were fit to the model in each setting. In each clinic, 95% of the measured data were contained within a factor of 0.2 and one root mean square deviation of the model-based values. The root mean square deviations of the mathematical model were 0.91 cGy Gy(-1) and 1.67 cGy Gy(-1) in the MD Anderson and AUBMC clinics, respectively. The TPS predictions agreed poorly with measurements in regions of sharp dose gradient, e.g., near the field edge. At distances greater than 1 cm from the field edge, the TPS underestimated the dose by an average of 14% ± 24% and 44% ± 19% in the MD Anderson and AUBMC clinics, respectively. The in-field measured dose values of the measurement at AUBMC matched the dose values calculated by the TPS to within 2%. Dose algorithms in TPSs systematically underestimated the actual out-of-field dose. Therefore, it is important to use an improved model based on measurements when estimating out-of-field dose. The model proposed in this study performed well for this purpose in two clinics and may be applicable in other clinics with similar treatment field configurations.
    Physics in Medicine and Biology 10/2013; 58(21):7463-7479. DOI:10.1088/0031-9155/58/21/7463 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionising radiation is increasingly used for the treatment of cancer, being the source of a considerable fraction of the medical irradiation to patients. With the increasing success rate of cancer treatments and longer life expectancy of the treated patients, the issue of secondary cancer incidence is of growing concern, especially for paediatric patients who may live long after the treatment and be more susceptible to carcinogenesis. Also, additional imaging procedures like computed tomography, kilovoltage and megavoltage imaging and positron emission tomography, alone or in conjunction with radiation therapy, may add to the radiation burden associated with the risk of occurrence of secondary cancers. This work has been based on literature studies and is focussed on the assessment of secondary doses to healthy tissues that are delivered by the use of modern radiation therapy and diagnostic imaging modalities in the clinical environment.
    Radiation Protection Dosimetry 10/2014; 161(1-4):357-362. DOI:10.1093/rpd/nct335 · 0.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose To compare the risks of radiogenic second cancers and cardiac mortality in 17 pediatric medulloblastoma patients treated with passively scattered proton or field-in-field photon craniospinal irradiation (CSI). Material/methods Standard of care photon or proton CSI treatment plans were created for all 17 patients in a commercial treatment planning system (TPS) (Eclipse version 8.9; Varian Medical Systems, Palo Alto, CA) and prescription dose was 23.4 or 23.4 Gy (RBE) to the age specific target volume at 1.8 Gy/fraction. The therapeutic doses from proton and photon CSI plans were estimated from TPS. Stray radiation doses were determined from Monte Carlo simulations for proton CSI and from measurements and TPS for photon CSI. The Biological Effects of Ionization Radiation VII report and a linear model based on childhood cancer survivor data were used for risk predictions of second cancer and cardiac mortality, respectively. Results The ratios of lifetime attributable risk (RLARs) (proton/photon) ranged from 0.10 to 0.22 for second cancer incidence and ranged from 0.20 to 0.53 for second cancer mortality, respectively. The ratio of relative risk (RRR) (proton/photon) of cardiac mortality ranged from 0.12 to 0.24. The RLARs of both cancer incidence and mortality decreased with patient’s age at exposure (e), while the RRRs of cardiac mortality increased with e. Girls had a significantly higher RLAR of cancer mortality than boys. Conclusion Passively scattered proton CSI provides superior predicted outcomes by conferring lower predicted risks of second cancer and cardiac mortality than field-in-field photon CSI for all medulloblastoma patients in a large clinically representative sample in the United States, but the magnitude of superiority depends strongly on the patients’ anatomical development status.
    Radiotherapy and Oncology 10/2014; DOI:10.1016/j.radonc.2014.07.003 · 4.86 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
May 16, 2014