Effects of sleep deprivation on cognition

Neuroimaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
Progress in brain research (Impact Factor: 2.83). 01/2010; 185:105-29. DOI: 10.1016/B978-0-444-53702-7.00007-5
Source: PubMed


Sleep deprivation is commonplace in modern society, but its far-reaching effects on cognitive performance are only beginning to be understood from a scientific perspective. While there is broad consensus that insufficient sleep leads to a general slowing of response speed and increased variability in performance, particularly for simple measures of alertness, attention and vigilance, there is much less agreement about the effects of sleep deprivation on many higher level cognitive capacities, including perception, memory and executive functions. Central to this debate has been the question of whether sleep deprivation affects nearly all cognitive capacities in a global manner through degraded alertness and attention, or whether sleep loss specifically impairs some aspects of cognition more than others. Neuroimaging evidence has implicated the prefrontal cortex as a brain region that may be particularly susceptible to the effects of sleep loss, but perplexingly, executive function tasks that putatively measure prefrontal functioning have yielded inconsistent findings within the context of sleep deprivation. Whereas many convergent and rule-based reasoning, decision making and planning tasks are relatively unaffected by sleep loss, more creative, divergent and innovative aspects of cognition do appear to be degraded by lack of sleep. Emerging evidence suggests that some aspects of higher level cognitive capacities remain degraded by sleep deprivation despite restoration of alertness and vigilance with stimulant countermeasures, suggesting that sleep loss may affect specific cognitive systems above and beyond the effects produced by global cognitive declines or impaired attentional processes. Finally, the role of emotion as a critical facet of cognition has received increasing attention in recent years and mounting evidence suggests that sleep deprivation may particularly affect cognitive systems that rely on emotional data. Thus, the extent to which sleep deprivation affects a particular cognitive process may depend on several factors, including the magnitude of global decline in general alertness and attention, the degree to which the specific cognitive function depends on emotion-processing networks, and the extent to which that cognitive process can draw upon associated cortical regions for compensatory support.

Download full-text


Available from: William D. S. Killgore,
  • Source
    • "EF in children depend on both sleep quantity and efficiency (Steenari et al., 2003); a growing body of literature suggests that beneficial (non-REM) sleep parameters are related to daytime executive functioning in ADHD (Gruber and Sadeh, 2004; Durmer and Dinges, 2005; Sadeh et al., 2006; Gruber et al., 2007, 2011). Prefrontal functions seem to be particularly vulnerable to sleep impairment (Killgore, 2010). However, the mechanisms, which determine how altered sleep parameters relate to specific daytime functioning deficits in general and in ADHD, remain elusive (Yoon et al., 2012; Turnbull et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Fourteen boys (10-14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.
    Frontiers in Cellular Neuroscience 08/2015; 9:307. DOI:10.3389/fncel.2015.00307 · 4.29 Impact Factor
  • Source
    • "These findings regarding attention and alertness are quite significant, especially if we contrast the relaxation response and clinical applications that seek to increase sleep duration/depth, with Buddhist texts and aims of enlightened awakening. Britton et al. point out that Buddhist meditators view the need for less sleep as a sign of progress and that sleep research has established a positive correlation between attention and wakefulness [53]. Moreover, there is only weak evidence that mindfulness meditation and MBSR promote sleep [54] [55], leading Britton et al. to argue that the Buddhist term awakening " . . "
    [Show abstract] [Hide abstract]
    ABSTRACT: The secular practice of meditation is associated with a range of physiological and cognitive effects, including lower blood pressure, lower cortisol, cortical thickening, and activation of areas of the brain associated with attention and emotion regulation. However, in the context of spiritual practice, these benefits are secondary gains, as the primary aim is spiritual transformation. Despite obvious difficulties in trying to measure a journey without goal, spiritual aspects involved in the practice of meditation should also be addressed by experimental study. This review starts by considering meditation in the form of the relaxation response (a counterpart to the stress response), before contrasting mindfulness research that emphasizes the role of attention and alertness in meditation. This contrast demonstrates how reference to traditional spiritual texts (in this case Buddhist) can be used to guide research questions involving meditation. Further considerations are detailed, along with the proposal that research should triangulate spiritual textual sources, first person accounts (i.e., neurophenomenology), and physiological/cognitive measures in order to aid our understanding of meditation, not only in the secular context of health benefits, but also in the context of spiritual practice.
    07/2015; 2015:1-8. DOI:10.1155/2015/891671
    • "Moreover, similar to findings in individuals with mood disorders, these sleep loss-associated impairments appear in spite of blunted affect (Talbot et al., 2010), impaired recognition of human emotions (Van Der Helm et al., 2010) and decreased emotional expressiveness (Minkel et al., 2011). An increased negative cognitive bias as a result of poor sleep quality is also likely, as emotion processing after sleep loss appears to be disinhibited, with increased sensitivity to emotional stimuli and increased 'moodiness' such as increased irritability, anger and hostility (Durmer and Dinges, 2005; Killgore, 2010; McCoy and Strecker, 2011; Taylor et al., 2013; Tsuchiyama et al., 2013). This is unlike sleep disturbance changes in cognitive processing such as attention and memory, where there is an obvious decrease in performance after sleep loss. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Poor sleep quality has been demonstrated to diminish cognitive performance, impair psychosocial functioning and alter the perception of stress. At present, however, there is little understanding of how sleep quality affects emotion processing. The aim of the present study was to determine the extent to which sleep quality, measured through the Pittsburg Sleep Quality Index, influences affective symptoms as well as the interaction between stress and performance on an emotional memory test and sustained attention task. To that end, 154 undergraduate students (mean age: 21.27 years, standard deviation = 4.03) completed a series of measures, including the Pittsburg Sleep Quality Index, the Sustained Attention to Response Task, an emotion picture recognition task and affective symptom questionnaires following either a control or physical stress manipulation, the cold pressor test. As sleep quality and psychosocial functioning differ among chronotypes, we also included chronotype and time of day as variables of interest to ensure that the effects of sleep quality on the emotional and non-emotional tasks were not attributed to these related factors. We found that poor sleep quality is related to greater depressive symptoms, anxiety and mood disturbances. While an overall relationship between global Pittsburg Sleep Quality Index score and emotion and attention measures was not supported, poor sleep quality, as an independent component, was associated with better memory for negative stimuli and a deficit in sustained attention to non-emotional stimuli. Importantly, these effects were not sensitive to stress, chronotype or time of day. Combined, these results suggest that individuals with poor sleep quality show an increase in affective symptomatology as well as a negative cognitive bias with a concomitant decrease in sustained attention to non-emotional stimuli. © 2015 European Sleep Research Society.
    Journal of Sleep Research 04/2015; 24(5). DOI:10.1111/jsr.12302 · 3.35 Impact Factor
Show more