Article

Effects of sleep deprivation on cognition.

Neuroimaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
Progress in brain research (Impact Factor: 4.19). 01/2010; 185:105-29. DOI: 10.1016/B978-0-444-53702-7.00007-5
Source: PubMed

ABSTRACT Sleep deprivation is commonplace in modern society, but its far-reaching effects on cognitive performance are only beginning to be understood from a scientific perspective. While there is broad consensus that insufficient sleep leads to a general slowing of response speed and increased variability in performance, particularly for simple measures of alertness, attention and vigilance, there is much less agreement about the effects of sleep deprivation on many higher level cognitive capacities, including perception, memory and executive functions. Central to this debate has been the question of whether sleep deprivation affects nearly all cognitive capacities in a global manner through degraded alertness and attention, or whether sleep loss specifically impairs some aspects of cognition more than others. Neuroimaging evidence has implicated the prefrontal cortex as a brain region that may be particularly susceptible to the effects of sleep loss, but perplexingly, executive function tasks that putatively measure prefrontal functioning have yielded inconsistent findings within the context of sleep deprivation. Whereas many convergent and rule-based reasoning, decision making and planning tasks are relatively unaffected by sleep loss, more creative, divergent and innovative aspects of cognition do appear to be degraded by lack of sleep. Emerging evidence suggests that some aspects of higher level cognitive capacities remain degraded by sleep deprivation despite restoration of alertness and vigilance with stimulant countermeasures, suggesting that sleep loss may affect specific cognitive systems above and beyond the effects produced by global cognitive declines or impaired attentional processes. Finally, the role of emotion as a critical facet of cognition has received increasing attention in recent years and mounting evidence suggests that sleep deprivation may particularly affect cognitive systems that rely on emotional data. Thus, the extent to which sleep deprivation affects a particular cognitive process may depend on several factors, including the magnitude of global decline in general alertness and attention, the degree to which the specific cognitive function depends on emotion-processing networks, and the extent to which that cognitive process can draw upon associated cortical regions for compensatory support.

8 Bookmarks
 · 
2,790 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Working memory and underlying functional brain deficits have been observed in euthymic bipolar disorder (BD) patients, though there is heterogeneity in the degree of deficits. Sleep/circadian rhythm abnormalities are thought to be a core component of BD and may explain some of the heterogeneity in functional abnormalities. This preliminary study examined associations between sleep/circadian rhythm abnormalities and functional magnetic resonance imaging (fMRI) brain response on a working memory task among BD patients.
    Journal of Affective Disorders 08/2014; 164C:101-106. · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High sleep quality promotes efficient performance in the following day. Sleep quality is influenced by environmental factors, such as temperature, light, sound and smell. Here, we investigated whether differences in the interface pressure distribution on healthy individuals during sleep influenced sleep quality. We defined four types of pressure models by differences in the area distribution and the subjective feelings that occurred when participants slept on the mattresses. One type of model was showed "over-concentrated" distribution of pressure; one was displayed "over-evenly" distributed interface pressure while the other two models were displayed intermediate distribution of pressure. A polysomnography analysis demonstrated an increase in duration and proportion of non-rapid-eye-movement sleep stages 3 and 4, as well as decreased number of micro-arousals, in subjects sleeping on models with pressure intermediately distributed compared to models with over-concentrated or over-even distribution of pressure. Similarly, higher scores of self-reported sleep quality were obtained in subjects sleeping on the two models with intermediate pressure distribution. Thus, pressure distribution, at least to some degree, influences sleep quality and self-reported feelings of sleep-related events, though the underlying mechanisms remain unknown. The regulation of pressure models imposed by external sleep environment may be a new direction for improving sleep quality. Only an appropriate interface pressure distribution is beneficial for improving sleep quality, over-concentrated or -even distribution of pressure do not help for good sleep.
    PLoS ONE 01/2014; 9(6):e99969. · 3.53 Impact Factor
  • Chronobiology International. 10/2012; 29(9).

Full-text

Download
1,017 Downloads
Available from
Jun 3, 2014

Similar Publications