Article

Β-arrestin: a signaling molecule and potential therapeutic target for heart failure.

Duke University School of Medicine, Durham, NC, USA.
Journal of Molecular and Cellular Cardiology (Impact Factor: 5.15). 11/2010; 51(4):534-41. DOI:10.1016/j.yjmcc.2010.11.005
Source: PubMed

ABSTRACT Currently, some of the most effective treatments for heart failure target GPCRs such as the beta-adrenergic receptors (β1AR and β2AR) and angiotensin II type IA receptors (AT1aR). Ligands for these receptors not only function by blocking the deleterious G-protein mediated pathway leading to heart failure, but also signal via G-protein independent pathways that involve receptor phosphorylation by G-protein receptor kinases (GRKs) leading to recruitment of the multifunctional protein, β-arrestin. Originally thought to play a role in GPCR desensitization and internalization, β-arrestin has recently been shown to mediate signaling independent of classical second messengers in a way that is often protective to the heart. The multi-functionality of β-arrestin makes it an intriguing molecule in the development of the next generation of drugs for cardiac diseases with the potential to simultaneously inhibit deleterious G-protein dependent pathways while activating beneficial β-arrestin mediated signaling. In this review, we explore various facets of β-arrestin signaling and offer a perspective on its potential role as a key signaling molecule in the treatment of heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."

0 0
 · 
0 Bookmarks
 · 
81 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The ability of cardiomyocytes to detect mechanical and humoral stimuli is critical for adaptation of the myocardium in response to new conditions and for sustaining the increased workload during stress. While certain stimuli mediate a beneficial adaptation to stress conditions, others result in maladaptive remodelling, ultimately leading to heart failure. Specific signalling pathways activating either adaptive or maladaptive cardiac remodelling have been identified. Paradoxically, however, in a number of cases, the transduction pathways involved in such opposing responses engage the same signalling proteins. A notable example is the Raf-MEK1/2-ERK1/2 signalling pathway that can control both adaptive and maladaptive remodelling. ERK1/2 signalling requires a signalosome complex where a scaffold protein drives the assembly of these three kinases into a linear pathway to facilitate their sequential phosphorylation, ultimately targeting specific effector molecules. Interestingly, a number of different Raf-MEK1/2-ERK1/2 scaffold proteins have been identified, and their role in determining the adaptive or maladaptive cardiac remodelling is a promising field of investigation for the development of therapeutic strategies capable of selectively potentiating the adaptive response.
    Cellular and Molecular Life Sciences CMLS 03/2013; · 5.62 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: G protein-coupled receptors have been successfully targeted by numerous therapeutics including drugs that have transformed the management of cardiovascular disease. However, many GPCRs, when activated or blocked by drugs, elicit both beneficial and adverse pharmacology. Recent work has demonstrated that in some cases, the salutary and deleterious signals linked to a specific GPCR can be selectively targeted by "biased ligands" that entrain subsets of a receptor's normal pharmacology. This review briefly summarizes the advances and current state of the biased ligand field, focusing on an example: biased ligands targeting the angiotensin II type 1 receptor. These compounds exhibit unique pharmacology, distinct from classic agonists or antagonists, and one such molecule is now in clinical development for the treatment of acute heart failure.
    Trends in cardiovascular medicine 03/2013; · 4.37 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: G-Protein-coupled receptors (GPCRs) signal through G protein α and βγ subunit families to regulate a wide range of physiological and pathophysiological processes. As such, GPCRs are major targets for therapeutic drugs. Downstream targets of GPCRs have also gained interest as a therapeutic approach to complex pathologies involving multiple GPCRs. One such approach involves targeting of the G proteins themselves. Several small molecule Gα and Gβγ modulators have been developed and been tested in various animal models of disease. Here we will discuss the requirements for targeting Gα and Gβγ subunits, the mechanisms of action of currently identified inhibitors, and focus on the potential utility of Gα and Gβγ inhibitors in the treatment of various cancers.
    Trends in Pharmacological Sciences 04/2013; · 9.25 Impact Factor

Full-text

View
0 Downloads
Available from

Nabila Noor