Designing Science in a Crisis: The Deepwater Horizon Oil Spill

Office of Research and Development, US Environmental Protection Agency, Washington, DC, USA.
Environmental Science & Technology (Impact Factor: 5.48). 11/2010; 44(24):9250-1. DOI: 10.1021/es103700x
Source: PubMed
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The petroleum industry activities provide potential risks to the environment because they can contaminate ecosystems with different organic compounds in the production chain. Several accidents with transport and handling of petroleum and related products occurred in urban areas with harmful effects to the quality of life and economy. In the 1990s, bioremediation and phytoremediation technologies as economically feasible alternatives to repair the environmental damage were developed. In this study, the potential of the willows Salix rubens and Salix triandra were evaluated with regard to the phytoremediation of soils contaminated with petroleum-derived hydrocarbons (total hydrocarbons and polycyclic aromatic hydrocarbons (PAHs)). The PAHs were quantified by extraction from soils and plants using dichloromethane under ultrasonication. The HPLC analysis was performed with GC/MSD equipment. The total hydrocarbons present in uncontaminated soil were quantified by the sum of animal/vegetable oils and greases and mineral oils and greases according to Standard Methods 5520 (1997). The two willows species S. rubens and S. triandra were resistant during the project development. In the contaminated soil, in which both species were planted, the total hydrocarbons concentration was reduced near 98 %. The PAHs content was remarkably reduced as well. Pyrene showed an initial concentration of 23.06 μg kg−1, decreasing in most cases to 0.1 μg kg−1 or to undetectable levels. Chrysene decreased from 126.27 μg kg−1 to undetectable levels. Benzo[k]fluoranthene and benzo[a]pyrene concentrations had also showed a decrease from 28.44 and 3.82 μg kg−1, respectively, to undetectable levels.
    Water Air and Soil Pollution 10/2012; 223(8). DOI:10.1007/s11270-012-1228-z · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Concern regarding the Deepwater Horizon oil crisis has largely focused on oil and dispersants while the threat of genotoxic metals in the oil has gone largely overlooked. Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms, resulting in persistent exposures. We found chromium and nickel concentrations ranged from 0.24 to 8.46 ppm in crude oil from the riser, oil from slicks on surface waters and tar balls from Gulf of Mexico beaches. We found nickel concentrations ranged from 1.7 to 94.6 ppm wet weight with a mean of 15.9 ± 3.5 ppm and chromium concentrations ranged from 2.0 to 73.6 ppm wet weight with a mean of 12.8 ± 2.6 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis. Mean tissue concentrations were significantly higher than those found in whales collected around the world prior to the spill. Given the capacity of these metals to damage DNA, their presence in the oil, and their elevated concentrations in whales, we suggest that metal exposure is an important understudied concern for the Deepwater Horizon oil disaster.
    Environmental Science & Technology 02/2014; 48:2997-3006. DOI:10.1021/es405079b · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2011, the U.S. Environmental Protection Agency initiated the NexGen project to develop a new paradigm for the next generation of risk science. The NexGen framework was built on three cornerstones: the availability of new data on toxicity pathways made possible by fundamental advances in basic biology and toxicological science; the incorporation of a population health perspective that recognizes that most adverse health outcomes involve multiple determinants; and a renewed focus on new risk assessment methodologies designed to better inform risk management decision making. The NexGen framework has three phases. Phase I (objectives) focuses on problem formulation and scoping, taking into account the risk context and the range of available risk management decision making options. Phase II (risk assessment) seeks to identify critical toxicity pathway perturbations using new toxicity testing tools and technologies, and to better characterize risks and uncertainties using advanced risk assessment methodologies. A blueprint for pathway-based toxicity testing was provided by the 2007 U.S. National Research Council (NRC) report, Toxicity Testing in the 21st Century: A Vision and a Strategy; guidance on new risk assessment methods is provided by the 2009 NRC report, Science and Decisions, Advancing Risk Assessment. Phase III (risk management) involves the development of evidence-based population health risk management strategies of a regulatory, economic, advisory, community-based, or technological nature, using sound principles of risk management decision making. Analysis of a series of case-study prototypes indicated that many aspects of the NexGen framework are already beginning to be adopted in practice.
    Environmental Health Perspectives 04/2014; 122(8). DOI:10.1289/ehp.1307260 · 7.03 Impact Factor


1 Download
Available from