Article

IGF-I and vitamin C promote myogenic differentiation of mouse and human skeletal muscle cells at low temperatures.

Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 309A Building 15, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
Experimental Cell Research (Impact Factor: 3.56). 11/2010; 317(3):356-66. DOI: 10.1016/j.yexcr.2010.11.001
Source: PubMed

ABSTRACT In a previous study investigating the effects of low temperature on skeletal muscle differentiation, we demonstrated that C2C12 mouse myoblasts cultured at 30°C do not express myogenin, a myogenic regulatory factor (MRF), or fuse into multinucleated myotubes. At this low temperature, the myoblasts continuously express Id3, a negative regulator of MRFs, and do not upregulate muscle-specific microRNAs. In this study, we examined if insulin-like growth factor-I (IGF-I) and a stable form of vitamin C (L-ascorbic acid phosphate) could alleviate the low temperature-induced inhibition of myogenic differentiation in C2C12 cells. Although the addition of either IGF-I or vitamin C alone could promote myogenin expression in C2C12 cells at 30°C, elongated multinucleated myotubes were not formed unless both IGF-I and vitamin C were continuously administered. In human skeletal muscle cells, low temperature-induced blockage of myogenic differentiation was also ameliorated by exogenous IGF-I and vitamin C. In addition, we demonstrated that satellite cells of IGF-I overexpressing transgenic mice in single-fiber culture expressed myogenin at a higher level than those of wild-type mice at 30°C. This study suggests that body temperature plays an important role in myogenic differentiation of endotherms, but the sensitivity to low temperature could be buffered by certain factors in vivo, such as IGF-I and vitamin C.

0 Bookmarks
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Limbal stem cells (LSC), which reside in the basal layer of the limbus, are thought to be responsible for corneal epithelial healing after injury. When the cornea is damaged, LSC start to proliferate, differentiate, and migrate to the site of injury. To characterize the signaling molecules ensuring communication between the cornea and LSC, we established a mouse model of mechanical corneal damage. The central cornea or limbal tissue was excised at different time intervals after injury, and the expression of genes in the explants was determined. It was observed that a number of genes for growth and differentiation factors were significantly upregulated in the cornea rapidly after injury. The ability of these factors to regulate the differentiation and proliferation of limbal cells was tested. It was found that the insulin-like growth factor-I (IGF-I), which is rapidly overexpressed after injury, enhances the expression of IGF receptor in limbal cells and induces the differentiation of LSC into cells expressing the corneal cell marker, cytokeratin K12, without any effect on limbal cell proliferation. In contrast, the epidermal growth factor (EGF) and fibroblast growth factor-β (FGF-β), which are also produced by the damaged corneal epithelium, supported limbal cell proliferation without any effect on their differentiation. Other factors did not affect limbal cell differentiation or proliferation. Thus, IGF-I was identified as the main factor stimulating the expression of IGF receptors in limbal cells and inducing the differentiation of LSC into cells expressing corneal epithelial cell markers. The proliferation of these cells was supported by EGF and FGF.
    Stem cells and development 08/2012; · 4.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the purpose of determining the higher-order nonlinear optical susceptibility the diffraction method based on investigation into the Fourier-expansion spatial components for the anharmonic grating of the refractive index has been used. Comparison between the experimental and theoretical data makes it possible to relate unambiguously the energy efficiency of multiwave mixing to the nonlinear susceptibility. Efficiency of the proposed mixing patterns has been tested experimentally on the basis of dye solutions in conditions of pulsed laser excitation. The measurement results obtained for the energy efficiency of four-, six- and eight-wave mixing enable calculations of the third, fifth- and seventh-order nonlinear optical susceptibilities, respectively. Experimentally, the method proposed for measurements of the higher order nonlinearities has been realized with the use of the multiwave mixing of monopulse Nd:YAG laser radiation in the solution of polymethine and Rhodamine 6G dyes.
    Advanced Optoelectronics and Lasers, 2005. Proceedings of CAOL 2005. Second International Conference on; 10/2005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin C has been shown to delay the cellular senescence and was considered a candidate for chemoprevention and cancer therapy. To understand the reported contrasting roles of vitamin C: growth-promoting in the primary cells and growth-inhibiting in cancer cells, primary mouse embryonic fibroblasts (MEF) and their isogenic spontaneously immortalized fibroblasts with unlimited cell division potential were used as the model pair. We used microarray gene expression profiling to show that the immortalized MEF possess human cancer gene expression fingerprints including a pattern of up-regulation of inflammatory response-related genes. Using the MEF model, we found that a physiological treatment level of vitamin C (10(-5) M), but not other unrelated antioxidants, enhanced cell growth. The growth-promoting effect was associated with a pattern of enhanced expression of cell cycle- and cell division-related genes in both primary and immortalized cells. In the immortalized MEF, physiological treatment levels of vitamin C also enhanced the expression of immortalization-associated genes including a down-regulation of genes in the extracellular matrix functional category. In contrast, confocal immunofluorescence imaging of the primary MEF suggested an increase in collagen IV protein upon vitamin C treatment. Similar to the cancer cells, the growth-inhibitory effect of the redox-active form of vitamin C was preferentially observed in immortalized MEF. All effects of vitamin C required its intracellular presence since the transporter-deficient SVCT2-/- MEF did not respond to vitamin C. SVCT2-/- MEF divided and became immortalized readily indicating little dependence on vitamin C for the cell division. Immortalized SVCT2-/- MEF required higher concentration of vitamin C for the growth inhibition compared to the immortalized wildtype MEF suggesting an intracellular vitamin C toxicity. The relevance of our observation in aging and human cancer prevention was discussed.
    PLoS ONE 01/2012; 7(3):e32957. · 3.53 Impact Factor