Article

The canonical Wnt/β-catenin signaling pathway regulates Fgf signaling for early facial development.

Department of Cell Biology and Human Anatomy, University of California, Davis, Sacramento, CA 95817, USA.
Developmental Biology (Impact Factor: 3.64). 11/2010; 349(2):250-60. DOI: 10.1016/j.ydbio.2010.11.004
Source: PubMed

ABSTRACT The canonical Wnt/β-catenin signaling pathway has implications in early facial development; yet, its function and signaling mechanism remain poorly understood. We report here that the frontonasal and upper jaw primordia cannot be formed after conditional ablation of β-catenin with Foxg1-Cre mice in the facial ectoderm and the adjacent telencephalic neuroepithelium. Gene expression of several cell-survival and patterning factors, including Fgf8, Fgf3, and Fgf17, is dramatically diminished in the anterior neural ridge (ANR, a rostral signaling center) and/or the adjacent frontonasal ectoderm of the β-catenin conditional mutant mice. In addition, Shh expression is diminished in the ventral telencephalon of the mutants, while Tcfap2a expression is less affected in the facial primordia. Apoptosis occurs robustly in the rostral head tissues following inactivation of Fgf signaling in the conditional mutants. Consequently, the upper jaw, nasal, ocular and telencephalic structures are absent, but the tongue and mandible are relatively developed in the conditional mutants at birth. Using molecular biological approaches, we demonstrate that the Fgf8 gene is transcriptionally targeted by Wnt/β-catenin signaling during early facial and forebrain development. Furthermore, we show that conditional gain-of-function of β-catenin signaling causes drastic upregulation of Fgf8 mRNA in the ANR and the entire facial ectoderm, which also arrests facial and forebrain development. Taken together, our results suggest that canonical Wnt/β-catenin signaling is required for early development of the mammalian face and related head structures, which mainly or partly acts through the initiation and modulation of balanced Fgf signaling activity.

0 Bookmarks
 · 
79 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of the mammalian face requires a large number of genes that are expressed with spatio-temporal specificity, and transcriptional regulation mediated by enhancers plays a key role in the precise control of gene expression. Using chromatin immunoprecipitation for a histone marker of active enhancers, we generated a genome-wide map of candidate enhancers from the maxillary arch (primordium for the upper jaw) of mouse embryos. Furthermore, we confirmed multiple novel craniofacial enhancers near the genes implicated in human palate defects through functional assays. We characterized in detail one of the enhancers (Lhx8_enh1) located upstream of Lhx8, a key regulatory gene for craniofacial development. Lhx8_enh1 contained an evolutionarily conserved binding site for Lymphoid Enhancer Factor (LEF)/T-Cell Factor (TCF) family proteins, which mediate the transcriptional regulation by WNT/β- catenin signaling pathway. We demonstrated in vitro that WNT/β-catenin signaling was indeed essential for the expression of Lhx8 in the maxillary arch cells, and that Lhx8_enh1 was a direct target of WNT/β-catenin pathway. Together, we uncovered a molecular mechanism for the regulation of Lhx8, and provided valuable resources for further investigation into the gene regulatory network of craniofacial development.
    Journal of Biological Chemistry 09/2014; 289(44). · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Heterozygous mutations in the chromatin remodeling gene CHD7 cause CHARGE syndrome, a developmental disorder with variable craniofacial dysmorphisms and respiratory difficulties. The molecular etiologies of these malformations are not well understood. Homozygous Chd7 null mice die by E11, whereas Chd7Gt/+ heterozygous null mice are a viable and excellent model of CHARGE. We explored skeletal phenotypes in Chd7Gt/+ and Chd7 conditional knockout mice, using Foxg1-Cre to delete Chd7 (Foxg1-CKO) in the developing eye, ear, nose, pharyngeal pouch, forebrain, and gut and Wnt1-Cre (Wnt1-CKO) to delete Chd7 in migrating neural crest cells.Results: Foxg1-CKO mice exhibited postnatal respiratory distress and death, dysplasia of the eye, concha, and frontal bone, hypoplastic maxillary shelves and nasal epithelia, and reduced tracheal rings. Wnt1-CKO mice exhibited frontal and occipital bone dysplasia, hypoplasia of the maxillary shelves and mandible, and cleft palate. In contrast, heterozygous Chd7Gt/+ mice had apparently normal skeletal development.Conclusions: Conditional deletion of Chd7 in ectodermal and endodermal derivatives (Foxg1-Cre) or migrating neural crest cells (Wnt1-Cre) results in varied and more severe craniofacial defects than in Chd7Gt/+ mice. These studies indicate that CHD7 has an important, dosage-dependent role in development of several different craniofacial tissues. Developmental Dynamics, 2014. © 2014 Wiley Periodicals, Inc.
    Developmental Dynamics 06/2014; 243(9). · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signaling pathway is an essential player during vertebrate embryonic development which has been associated with several developmental processes such as gastrulation, body axis formation and morphogenesis of numerous organs, namely the lung. Wnt proteins act through specific transmembrane receptors, which activate intracellular pathways that regulate cellular processes such as cell proliferation, differentiation and death. Morphogenesis of the fetal lung depends on epithelial-mesenchymal interactions that are governed by several growth and transcription factors that regulate cell proliferation, fate, migration and differentiation. This process is controlled by different signaling pathways such as FGF, Shh and Wnt among others. Wnt signaling is recognized as a key molecular player in mammalian pulmonary development but little is known about its function in avian lung development. The present work characterizes, for the first time, the expression pattern of several Wnt signaling members, such as wnt-1, wnt-2b, wnt-3a, wnt-5a, wnt-7b, wnt-8b, wnt-9a, lrp5, lrp6, sfrp1, dkk1, β-catenin and axin2 at early stages of chick lung development. In general, their expression is similar to their mammalian counterparts. By assessing protein expression levels of active/total β-catenin and phospho-LRP6/LRP6 it is revealed that canonical Wnt signaling is active in this embryonic tissue. In vitro inhibition studies were performed in order to evaluate the function of Wnt signaling pathway in lung branching. Lung explants treated with canonical Wnt signaling inhibitors (FH535 and PK115-584) presented an impairment of secondary branch formation after 48 h of culture along with a decrease in axin2 expression levels. Branching analysis confirmed this inhibition. Wnt-FGF crosstalk assessment revealed that this interaction is preserved in the chick lung. This study demonstrates that Wnt signaling is crucial for precise chick lung branching and further supports the avian lung as a good model for branching studies since it recapitulates early mammalian pulmonary development.
    PLoS ONE 12/2014; 9(12):e112388. · 3.53 Impact Factor

Preview

Download
0 Downloads
Available from