Combined effects of soy isoflavone and fish oil on ovariectomy-induced bone loss in mice.

Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan.
Journal of Bone and Mineral Metabolism (Impact Factor: 2.11). 11/2010; 29(4):404-13. DOI: 10.1007/s00774-010-0234-8
Source: PubMed

ABSTRACT Both soy isoflavone and n-3 polyunsaturated fatty acids are known to reduce the levels of bone-resorbing cytokines; however, the synergistic effects of these food ingredients have not been examined yet. This study was performed to elucidate the effect of concomitant intake of soy isoflavone and fish oil on bone mass in ovariectomized mice. Eight-week-old ddY female mice were subjected to ovariectomy (OVX) or sham surgery, and then fed an AIN-93G with safflower oil (So) as a control lipid source, isoflavone-supplemented safflower oil (So + I), fish oil instead of safflower oil (Fo) or isoflavone-supplemented fish oil (Fo + I) for 4 weeks. Femoral bone mineral density was significantly decreased by OVX; however, this decrease was inhibited by the intake of isoflavone and/or fish oil. Histomorphometric analyses showed that bone volume and trabecular thickness in the distal femoral trabecular bone were significantly lower in the So group than in the sham group, but those were restored in the Fo + I groups. The number of osteoclasts was significantly decreased by isoflavone intake. The increased rate of bone resorption after OVX was inhibited by isoflavone and/or fish oil. The serum concentration of tumor necrosis factor alpha was increased after OVX, but was significantly lower with the combination of isoflavone with fish oil than isoflavone or fish oil alone. The results of this study indicated that the intakes of soy isoflavone and/or fish oil might have ameliorating effects on bone loss due to OVX. Further, the concomitant intake of soy isoflavone and fish oil at a low dose showed better effects on cytokines related with bone resorption.

  • Source
    Soybean and Nutrition, 09/2011; , ISBN: 978-953-307-536-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mycoepoxydiene (MED) is a compound isolated from the marine fungal Diaporthe sp. HLY-1 associated with mangroves. MED has various biological effects such as anti-microbial, anti-cancer, and anti-inflammatory activities. However, the effect of MED on the differentiation of osteoclasts, the multinucleated bone-resorbing cells which play a crucial role in bone remodeling, is still unknown. In this study, we showed that MED could inhibit receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation and the expression of three well-known osteoclast markers such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K in bone marrow-derived macrophages. Furthermore, we found that MED inhibited the expression of nuclear factor of activated T cells c1, a key transcriptional factor in osteoclast differentiation, via inhibiting the phosphorylation of TAK1 and then blocking the activation of NF-κB and ERK1/2 pathways. Moreover, MED could prevent bone loss in ovariectomized mice. Taken together, we demonstrate for the first time that MED can suppress RANKL-induced osteoclast differentiation in vitro and ovariectomy-induced osteoporosis in vivo, suggesting that MED is a potential lead compound for the development of novel drugs for osteoporosis treatment.
    Applied Microbiology and Biotechnology 06/2012; 97(2). DOI:10.1007/s00253-012-4146-5 · 3.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have identified a positive correlation between the intake of n‑3 fatty acids and bone mineral density in postmenopausal women. The aim of the present study was to determine the effects of fish oil on bone metabolism and to investigate the underlying mechanism using ovariectomized rats. Ovariectomized or sham‑operated (sham) female rats were fed AIN‑76A‑based diets containing 5% corn or fish oil for 2 weeks. Fish oil was found to decrease the plasma levels of arachidonic and linoleic acids, but increased the levels of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Fish oil reversed the increased activity and number of osteoclasts, and decreased calcium (Ca) and hydroxyproline (Hyp) content of the proximal tibia to sham values without affecting the activity or number of osteoblasts. In addition, fish oil suppressed increases in the mRNA and protein levels of macrophage colony‑stimulating factor (M‑CSF), PU.1, microphthalmia-associated transcription factor (MITF), receptor for activation of NFκB (RANK) and RANK ligand (RANKL) and serum levels of tumor necrosis factor α (TNFα), interleukin‑6 (IL-6) and prostaglandin E2 (PGE2). Fish oil was also found to suppress NFκB activation induced by ovariectomy. These results indicate that increases in plasma n‑3 fatty acid levels by fish oil led to the suppression of NFκB activation and subsequent downregulation of TNFα, followed by suppression of M‑CSF and RANKL. Dietary fish oil suppressed ovariectomy‑stimulated osteoclastogenesis by inhibiting the expression of M‑CSF, PU.1, MITF and RANK in the early stages of osteoclastogenesis, upstream of RANKL signaling.
    Molecular Medicine Reports 04/2013; 7(6). DOI:10.3892/mmr.2013.1446 · 1.48 Impact Factor
Show more