Article

Suppression of Rev3, the catalytic subunit of Pol{zeta}, sensitizes drug-resistant lung tumors to chemotherapy.

The Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2010; 107(48):20786-91. DOI: 10.1073/pnas.1011409107
Source: PubMed

ABSTRACT Platinum-based chemotherapeutic drugs are front-line therapies for the treatment of non-small cell lung cancer. However, intrinsic drug resistance limits the clinical efficacy of these agents. Recent evidence suggests that loss of the translesion polymerase, Polζ, can sensitize tumor cell lines to cisplatin, although the relevance of these findings to the treatment of chemoresistant tumors in vivo has remained unclear. Here, we describe a tumor transplantation approach that enables the rapid introduction of defined genetic lesions into a preclinical model of lung adenocarcinoma. Using this approach, we examined the effect of impaired translesion DNA synthesis on cisplatin response in aggressive late-stage lung cancers. In the presence of reduced levels of Rev3, an essential component of Polζ, tumors exhibited pronounced sensitivity to cisplatin, leading to a significant extension in overall survival of treated recipient mice. Additionally, treated Rev3-deficient cells exhibited reduced cisplatin-induced mutation, a process that has been implicated in the induction of secondary malignancies following chemotherapy. Taken together, our data illustrate the potential of Rev3 inhibition as an adjuvant therapy for the treatment of chemoresistant malignancies, and highlight the utility of rapid transplantation methodologies for evaluating mechanisms of chemotherapeutic resistance in preclinical settings.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin can cause intrastrand and interstrand crosslinks between purine bases and is a chemotherapeutic drug widely used to treat cancer. However, the major barrier to the efficacy of the treatment is drug resistance. Homologous recombination (HR) plays a central role in restoring stalled forks caused by DNA lesions. Here, we report that chronic treatment with cisplatin induces HR to confer cisplatin resistance in nasopharyngeal carcinoma (NPC) cells. A high frequency of sister chromatid exchanges (SCE) occurs in the cisplatin-resistant NPC cells. In addition, several genes in the Fanconi anemia (FA) and template switching (TS) pathways show elevated expression. Significantly, depletion of HR gene BRCA1, TS gene UBC13, or FA gene FANCD2 suppresses SCE and causes cells to accumulate in the S phase, concomitantly with high γH2AX foci formation in the presence of low-dose cisplatin. Consistent with this result, depletion of several genes in the HR, TS, or FA pathway sensitizes the cisplatin-resistant NPC cells to cisplatin. Our results suggest that the enhanced HR, in coordination with the FA and TS pathways, underlies the cisplatin resistance. Targeting the HR, TS, or FA pathways could be a potential therapeutic strategy for treating cisplatin-resistant cancer.
    Oncotarget 07/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the leading cause of tumor-derived death. Although target therapy is proven very efficient, traditionally platinum-based chemotherapies are still primary treatment for most patients. Platinum can suppress the tumor growth and impair normal cells together. The primary aim of the present study was to study the potential role of translesion synthesis (TLS) that might play in platinum-chemotherapy tolerance and side-effect. In present study, a total of 663 patients who were newly histologically diagnosed with advanced NSCLC (aNSCLC) were enrolled. Treatment response was classified into four categories: complete response, partial response, stable disease, and progressive disease. Incidence of gastrointestinal and hematological toxicities was assessed twice a week during the whole first-line treatment. Eleven SNPs of POLK were genotyped. The associations between SNPs and treatment response or toxicity were analyzed with logistic regression model. Cox regression was used for survival analysis between SNPs and progression-free survival or overall survival. We identified that rs3213801 and rs5744533 showed complete linkage in the present study, and they were significantly associated with treatment response (adjusted P = 0.044), together with rs5744655 (adjusted P = 0.039). rs1018119 was correlated with gastrointestinal toxicity in smokers specially (adjusted P = 0.041). Besides, rs3756558 was associated with hematological toxicity and overall toxicity in smokers and combined cohort with additive model. We also identified the significant association between two SNPs, rs10077427 and rs5744545, and PFS. The polymorphism of POLK, an important gene in TLS, participates in platinum-chemotherapy tolerance and side-effect.
    Cell Biochemistry and Biophysics 06/2014; · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Maintenance of genome stability requires the integrity of the DNA repair machinery. DNA damage response (DDR) determines cell fate and regulates the expression of microRNAs (miRNAs), which in turn may also regulate important components of the DNA repair machinery.Areas covered: In this review, we describe the bidirectional connection between miRNAs and DDR and their link with important biological functions such as, DNA repair, cell cycle and apoptosis in cancer. Furthermore, we highlight the potential implications of recent findings on miRNA/DDR in determining chemotherapy response in cancer patients, and the use of these biomarkers for novel potential therapeutic approaches.Expert opinion: Defects in the DDR and deregulation of miRNAs are important hallmarks of human cancer. A full understanding of the mechanisms underlying the connection between miRNAs and DDR/DNA repair pathways will positively impact our knowledge on human tumor biology and on different responses to distinct drugs. Specific miRNAs interact with distinct DDR components and are promising targets for enhancing the effects of, and/or to overcome the resistance to, conventional chemotherapeutic agents. Finally, the development of innovative tools to deliver miRNA-targeting oligonucleotides may represents novel types of cancer interventions in clinic.
    Expert Opinion on Biological Therapy 09/2014; · 3.65 Impact Factor

Full-text (2 Sources)

Download
26 Downloads
Available from
May 29, 2014