The proteomic advantage: label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis.

U.S. Food and Drug Administration Center for Veterinary Medicine, 8401 Muirkirk Road, Laurel, MD 20708, United States.
Veterinary Immunology and Immunopathology (Impact Factor: 1.88). 10/2010; 138(4):252-66. DOI: 10.1016/j.vetimm.2010.10.004
Source: PubMed

ABSTRACT Coliform mastitis remains a primary focus of dairy cattle disease research due in part to the lack of efficacious treatment options for the deleterious side effects of exposure to LPS, including profound intra-mammary inflammation. To facilitate new veterinary drug approvals, reliable biomarkers are needed to evaluate the efficacy of adjunctive therapies for the treatment of inflammation associated with coliform mastitis. Most attempts to characterize the host response to LPS, however, have been accomplished using ELISAs. Because a relatively limited number of bovine-specific antibodies are commercially available, reliance on antibodies can be very limiting for biomarker discovery. Conversely, proteomic approaches boast the capability to analyze an unlimited number of protein targets in a single experiment, independent of antibody availability. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), a widely used proteomic strategy for the identification of proteins in complex mixtures, has gained popularity as a means to characterize proteins in various bovine milk fractions, both under normal physiological conditions as well as during clinical mastitis. The biological complexity of bovine milk has, however, precluded the complete annotation of the bovine milk proteome. Conventional approaches to reducing sample complexity, including fractionation and the removal of high abundance proteins, has improved proteome coverage, but the dynamic range of proteins present, and abundance of a relatively small number of proteins, continues to hinder comparative proteomic analyses of bovine milk. Nonetheless, advances in both liquid chromatography and mass spectrometry instrumentation, including nano-flow liquid chromatography (nano-LC), nano-spray ionization, and faster scanning speeds and ionization efficiency of mass spectrometers, have improved analyses of complex samples. In the current paper, we review the proteomic approaches used to conduct comparative analyses of milk from healthy cows and cows with clinical mastitis, as well as proteins related to the host response that have been identified in mastitic milk. Additionally, we present data that suggests the potential utility of LC-MS/MS label-free quantification as an alternative to costly labeling strategies for the relative quantification of individual proteins in complex mixtures. Temporal expression patterns generated using spectral counts, an LC-MS/MS label-free quantification strategy, corresponded well with ELISA data for acute phase proteins with commercially available antibodies. Combined, the capability to identify low abundance proteins, and the potential to generate temporal expression profiles, indicate the advantages of using proteomics as a screening tool in biomarker discovery analyses to assess biologically relevant proteins modulated during disease, including previously uncharacterized targets.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract To understand the nature of a bacterial strain, it is necessary to be able to identify and measure the proteins expressed by the bacteria. In this research, the entire protein complements produced by Escherichia coli O157:H7 strain 43894OW and its naturally occurring curli producing variant 43894OR were compared to better understand the unique capabilities of these two closely related strains. A nonlabeled proteomic comparison was performed utilizing the spectra counting and peptide fractionation abilities of a quadrupole-time of flight analyzer mass spectrometer to identify and quantitate the proteins produced by the two strains. The process reliably identified and measured the concentration of 419 proteins from strains 43894OW and 43894OR within three separate biological replicates. From these two sets, 59 proteins were identified that were preferentially expressed in strain 43894OW compared to 43894OR and 14 proteins that were conversely preferentially expressed in 43894OR. A subset of the preferentially expressed proteins was assayed to determine whether their levels of gene transcription corresponded with the observed protein expression. From the resulting list of confirmed differentially expressed proteins, it was observed that the proteins contributing to acid survival-GadA and GadB-were overexpressed in 43894OW compared to 43894OR. The predicted enhanced acid resistance phenotype of 43894OW was confirmed by experimentation at pH 2.5. Additionally, a knockout mutation in the csgD genes of the 43894OR strain was constructed and suggested that CsgD had a repressive effect on acid survival in 43894OR.
    Foodborne Pathogens and Disease 10/2013; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Milk and dairy products are central elements in human diet. It is estimated that 108kg of milk per year are consumed per person worldwide. Therefore, dairy production represents a relevant fraction of the economies of many countries, being cattle, sheep, goat, water buffalo, and other ruminants the main species used worldwide. An adequate management of dairy farming cannot be achieved without the knowledge on the biological mechanisms behind lactation in ruminants. Thus, understanding the morphology, development and regulation of the mammary gland in health, disease and production is crucial. Presently, innovative and high-throughput technologies such as Genomics, Transcriptomics, Proteomics and Metabolomics allow a much broader and detailed knowledge on such issues. Additionally, the application of a systems biology approach to animal science is vastly growing, as new advances in one field of specialization or animal species lead to new lines of research in other areas or/and are expanded to other species. This article addresses how the modern research approaches may help us understanding long-known issues in mammary development, lactation biology and dairy production. Dairy production depends upon the knowledge of the morphology and regulation of the mammary gland and lactation. High-throughput technologies allow a much broader and detailed knowledge on the biology of the mammary gland. This paper reviews the major contributes that Genomics, Transcriptomics, Metabolomics and Proteomics approaches have provided to understand the regulation of the mammary gland in health, disease and production. In the context of mammary gland "omics"-based research, the integration of results using a Systems Biology Approach is of key importance.
    Journal of proteomics 09/2013; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. Rheumatic heart disease (RHD) is a serious autoimmune heart disease. The present study was aimed at identifying the differentially expressed proteins between patients with RHD and controls with mitral valve prolapse. Methods. Nine patients with RHD and nine controls with mitral valve prolapsed were enrolled for this study. Two-dimensional difference in-gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were performed. Results. A total of 39 protein spots with differential expressions were identified between the two groups (P < 0.05, Average Ratio > 1.2 or Average Ratio < -1.2) and four upregulated proteins (including heat shock protein 60 (HSP 60), desmin, PDZ and LIM domain protein 1, and proteasome subunit alpha type-1) and three downregulated proteins (including tropomyosin alpha-1 chain, malate dehydrogenase, and chaperone activity of bc1 complex homolog) were determined. Conclusion. These seven proteins, especially HSP 60, may serve as potential biomarkers for the diagnosis of RHD and provide evidence to explain the mechanisms of this complex disease in the future.
    BioMed research international. 01/2014; 2014:151726.

Full-text (2 Sources)

Available from
May 29, 2014