Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism.

College of Life Sciences, University of Dundee, Dundee, UK.
Proceedings of The Nutrition Society (Impact Factor: 3.67). 11/2010; 70(1):92-9. DOI: 10.1017/S0029665110003915
Source: PubMed

ABSTRACT The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status, and a regulator of energy balance at both the cellular and whole body levels. Although ubiquitously expressed, its function is best understood in skeletal muscle. AMPK contains sites that reversibly bind AMP or ATP, with an increase in cellular AMP:ATP ratio (signalling a fall in cellular energy status) switching on the kinase. In muscle, AMPK activation is therefore triggered by sustained contraction, and appears to be particularly important in the metabolic changes that occur in the transition from resistance to endurance exercise. Once activated, AMPK switches on catabolic processes that generate ATP, while switching off energy-requiring processes not essential in the short term. Thus, it acutely activates glucose uptake (by promoting translocation of the transporter GLUT4 to the membrane) and fatty acid oxidation, while switching off glycogen synthesis and protein synthesis (the later via inactivation of the mammalian target-of-rapamycin pathway). Prolonged AMPK activation also causes some of the chronic adaptations to endurance exercise, such as increased GLUT4 expression and mitochondrial biogenesis. AMPK contains a glycogen-binding domain that causes a sub-fraction to bind to the surface of the glycogen particle, and it can inhibit glycogen synthesis by phosphorylating glycogen synthase. We have shown that AMPK is inhibited by exposed non-reducing ends in glycogen. We are working on the hypothesis that this ensures that glycogen synthesis is rapidly activated when glycogen becomes depleted after exercise, but is switched off again as soon as glycogen stores are replenished.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute AMPK activation exacerbates ischemic brain damage experimentally. Paradoxically, the clinical use of an AMPK activator metformin reduces the incidence of stroke. We investigated whether post-stroke chronic metformin treatment promotes functional recovery and tissue repair via an M2-polarization mechanism following experimental stroke. Mice were randomly divided to receive metformin or vehicle daily beginning at 24 h after middle cerebral artery occlusion (MCAO). Neurological deficits were monitored for 30 days following MCAO. To characterize the polarization of the microglia and infiltrating macrophages, the expression of the M1 and M2 signature genes was analyzed with qPCR, ELISA and immunohistochemistry. Post-MCAO angiogenesis and neurogenesis were examined immunohistochemically. An in vitro angiogenesis model was employed to examine whether metformin promoted angiogenesis in a M2 polarization-dependent manner. Post-stroke chronic metformin treatment had no impact on acute infarction but enhanced cerebral AMPK activation, promoted functional recovery and skewed the microglia/macrophages toward an M2 phenotype following MCAO. Metformin also significantly increased angiogenesis and neurogenesis in the ischemic brain. Consistently, metformin-induced M2 polarization of BV2 microglial cells depended on AMPK activation in vitro. Furthermore, treatment of brain endothelial cells with conditioned media collected from metformin-polarized BV2 cells promoted angiogenesis in vitro. In conclusion, post-stroke chronic metformin treatment improved functional recovery following MCAO via AMPK-dependent M2 polarization. Modulation of microglia/macrophage polarization represents a novel therapeutic strategy for stroke.
    Brain Behavior and Immunity 01/2014; · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AMP-activated kinase (AMPK) is activated when the cellular (AMP+ADP)/ATP ratio rises; it therefore serves as a detector of cellular "fuel deficiency." AMPK activation is suspected to mediate some of the health-protective effects of long-term calorie restriction. Several drugs and nutraceuticals which slightly and safely impede the efficiency of mitochondrial ATP generation-most notably metformin and berberine-can be employed as clinical AMPK activators and, hence, may have potential as calorie restriction mimetics for extending healthspan. Indeed, current evidence indicates that AMPK activators may reduce risk for atherosclerosis, heart attack, and stroke; help to prevent ventricular hypertrophy and manage congestive failure; ameliorate metabolic syndrome, reduce risk for type 2 diabetes, and aid glycemic control in diabetics; reduce risk for weight gain; decrease risk for a number of common cancers while improving prognosis in cancer therapy; decrease risk for dementia and possibly other neurodegenerative disorders; help to preserve the proper structure of bone and cartilage; and possibly aid in the prevention and control of autoimmunity. While metformin and berberine appear to have the greatest utility as clinical AMPK activators-as reflected by their efficacy in diabetes management-regular ingestion of vinegar, as well as moderate alcohol consumption, may also achieve a modest degree of health-protective AMPK activation. The activation of AMPK achievable with any of these measures may be potentiated by clinical doses of the drug salicylate, which can bind to AMPK and activate it allosterically.
    Age 11/2013; · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle is a primary organ that uses blood glucose. Insulin- and 5'AMP-activated protein kinase (AMPK)-regulated intracellular signaling pathways are known as major mechanisms that regulate muscle glucose transport. It has been reported that macrophage migration inhibitory factor (MIF) is secreted from adipose tissue and heart, and affects these two pathways. In this study, we examined whether MIF is a myokine that is secreted from skeletal muscles and affects muscle glucose transport induced by these two pathways. We found that MIF is expressed in several different types of skeletal muscle. Its secretion was also confirmed in C2C12 myotubes, a skeletal muscle cell line. Next, the extensor digitorum longus (EDL) and soleus muscles were isolated from mice and treated with recombinant MIF in an in vitro muscle incubation system. MIF itself did not have any effect on glucose transport in both types of muscles. However, glucose transport induced by a submaximal dose of insulin was diminished by co-incubation with MIF in the soleus muscle. MIF also diminished glucose transport induced by a maximal dose of 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR), an AMPK activator, in the EDL muscle. These results suggest that MIF is a negative regulator of insulin- and AICAR-induced glucose transport in skeletal muscle. Since MIF secretion from C2C12 myotubes to the culture medium decreased during contraction evoked by electrical stimulations, MIF may be involved in the mechanisms underlying exercise-induced sensitization of glucose transport in skeletal muscle.
    Biochemical and Biophysical Research Communications 01/2014; · 2.41 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014