DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells

Department of Genetic Toxicology and Cancer Biology, National Institute of Biology , Ljubljana , Slovenia.
Nanotoxicology (Impact Factor: 7.34). 11/2010; 5(3):341-53. DOI: 10.3109/17435390.2010.507316
Source: PubMed

ABSTRACT We investigated the genotoxic responses to two types of TiO2 nanoparticles (<25 nm anatase: TiO(2)-An, and <100 nm rutile: TiO2-Ru) in human hepatoma HepG2 cells. Under the applied exposure conditions the particles were agglomerated or aggregated with the size of agglomerates and aggregates in the micrometer range, and were not cytotoxic. TiO2-An, but not TiO2-Ru, caused a persistent increase in DNA strand breaks (comet assay) and oxidized purines (Fpg-comet). TiO2-An was a stronger inducer of intracellular reactive oxygen species (ROS) than TiO2-Ru. Both types of TiO2 nanoparticles transiently upregulated mRNA expression of p53 and its downstream regulated DNA damage responsive genes (mdm2, gadd45α, p21), providing additional evidence that TiO2 nanoparticles are genotoxic. The observed differences in responses of HepG2 cells to exposure to anatase and rutile TiO2 nanoparticles support the evidence that the toxic potential of TiO2 nanoparticles varies not only with particle size but also with crystalline structure.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The cell cycle inhibitor p21(CDKN1A) is a protein playing multiple roles not only in the DNA damage response, but also in many cellular processes during unperturbed cell growth. The main, well-known function of p21 is to arrest cell cycle progression by inhibiting the activity of cyclin-dependent kinases. In addition, p21 is involved in the regulation of transcription, apoptosis, DNA repair, as well as cell motility. However, p21 appears to a have a dual-face behavior because, in addition to its tumor suppressor functions, it may act as an oncogene, depending on the cell type and on the cellular localization. As a biomarker of the cell response to different toxic stimuli, p21 expression and functions have been analyzed in an impressive number of studies investigating the activity of several types of chemicals, in order to determine their possible harmful effects on human cells. Here, we review these studies in order to highlight the different roles p21 may play in the cell response to chemical exposure and to better evaluate the information provided by this biomarker.
    Archive für Toxikologie 12/2014; 89(2). DOI:10.1007/s00204-014-1430-4 · 5.08 Impact Factor
  • Journal of Zhejiang University - Science A: Applied Physics & Engineering 07/2014; DOI:10.1631/jzus.A1400159 · 0.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to ambient air particles is associated with elevated levels of DNA strand breaks (SBs) and endonuclease III, formamidopyrimidine DNA glycosylase (FPG) and oxoguanine DNA glycosylase-sensitive sites in cell cultures, animals and humans. In both animals and cell cultures, increases in SB and in oxidatively damaged DNA are seen after exposure to a range of engineered nanomaterials (ENMs), including carbon black, carbon nanotubes, fullerene C60, ZnO, silver and gold. Exposure to TiO2 has generated mixed data with regard to SB and oxidatively damaged DNA in cell cultures. Nanosilica does not seem to be associated with generation of FPG-sensitive sites in cell cultures, while large differences in SB generation between studies have been noted. Single-dose airway exposure to nanosized carbon black and multi-walled carbon nanotubes in animal models seems to be associated with elevated DNA damage levels in lung tissue in comparison to similar exposure toTiO2 and fullerene C60. Oral exposure has been associated with augmented DNA damage levels in cells of internal organs, although the doses have been typically very high. Intraveneous and intraperitoneal injection of ENMs have shown contradictory results dependent on the type of ENM and dose in each set of experiments. In conclusion, the exposure to both combustion-derived particles and ENMs is associated with increased levels of DNA damage in the comet assay. Particle size, composition and crystal structure of ENM are considered important determinants of toxicity, whereas their combined contributions to genotoxicity in the comet assay are yet to be thoroughly investigated. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail:
    Mutagenesis 01/2015; 30(1):67-83. DOI:10.1093/mutage/geu035 · 3.50 Impact Factor


Available from
May 26, 2014