An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors.

Chemical Biology Platform, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States.
Journal of the American Chemical Society (Impact Factor: 11.44). 11/2010; 132(47):16962-76. DOI: 10.1021/ja105119r
Source: PubMed

ABSTRACT An aldol-based build/couple/pair (B/C/P) strategy was applied to generate a collection of stereochemically and skeletally diverse small molecules. In the build phase, a series of asymmetric syn- and anti-aldol reactions were performed to produce four stereoisomers of a Boc-protected γ-amino acid. In addition, both stereoisomers of O-PMB-protected alaninol were generated to provide a chiral amine coupling partner. In the couple step, eight stereoisomeric amides were synthesized by coupling the chiral acid and amine building blocks. The amides were subsequently reduced to generate the corresponding secondary amines. In the pair phase, three different reactions were employed to enable intramolecular ring-forming processes: nucleophilic aromatic substitution (S(N)Ar), Huisgen [3+2] cycloaddition, and ring-closing metathesis (RCM). Despite some stereochemical dependencies, the ring-forming reactions were optimized to proceed with good to excellent yields, providing a variety of skeletons ranging in size from 8- to 14-membered rings. Scaffolds resulting from the RCM pairing reaction were diversified on the solid phase to yield a 14 400-membered library of macrolactams. Screening of this library led to the discovery of a novel class of histone deacetylase inhibitors, which display mixed enzyme inhibition, and led to increased levels of acetylation in a primary mouse neuron culture. The development of stereo-structure/activity relationships was made possible by screening all 16 stereoisomers of the macrolactams produced through the aldol-based B/C/P strategy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the period 1970-2006, a total of 24 unique natural products were discovered that led to an approved drug. We analyze these successful leads in terms of drug-like properties, and show that they can be divided into two equal subsets. The first falls in the 'Lipinski universe' and complies with the Rule of Five. The second is a 'parallel universe' that violates the rules. Nevertheless, the latter compounds remain largely compliant in terms of logP and H-bond donors, highlighting the importance of these two metrics in predicting bioavailability. Natural products are often cited as an exception to Lipinski's rules. We believe this is because nature has learned to maintain low hydrophobicity and intermolecular H-bond donating potential when it needs to make biologically active compounds with high molecular weight and large numbers of rotatable bonds. In addition, natural products are more likely than purely synthetic compounds to resemble biosynthetic intermediates or endogenous metabolites, and hence take advantage of active transport mechanisms. Interestingly, the natural product leads in the Lipinski and parallel universe had an identical success rate (50%) in delivering an oral drug.
    Current Opinion in Chemical Biology 07/2008; 12(3):306-17. · 7.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The medicinal chemistry community has become increasingly aware of the value of tracking calculated physical properties such as molecular weight, topological polar surface area, rotatable bonds, and hydrogen bond donors and acceptors. We hypothesized that the shift to high-throughput synthetic practices over the past decade may be another factor that may predispose molecules to fail by steering discovery efforts toward achiral, aromatic compounds. We have proposed two simple and interpretable measures of the complexity of molecules prepared as potential drug candidates. The first is carbon bond saturation as defined by fraction sp(3) (Fsp(3)) where Fsp(3) = (number of sp(3) hybridized carbons/total carbon count). The second is simply whether a chiral carbon exists in the molecule. We demonstrate that both complexity (as measured by Fsp(3)) and the presence of chiral centers correlate with success as compounds transition from discovery, through clinical testing, to drugs. In an attempt to explain these observations, we further demonstrate that saturation correlates with solubility, an experimental physical property important to success in the drug discovery setting.
    Journal of Medicinal Chemistry 11/2009; 52(21):6752-6. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the exception of palladium-catalyzed cross-couplings, no other group of reactions has had such a profound impact on the formation of carbon-carbon bonds and the art of total synthesis in the last quarter of a century than the metathesis reactions of olefins, enynes, and alkynes. Herein, we highlight a number of selected examples of total syntheses in which such processes played a crucial role and which imparted to these endeavors certain elements of novelty, elegance, and efficiency. Judging from their short but impressive history, the influence of these reactions in chemical synthesis is destined to increase.
    Angewandte Chemie International Edition 08/2005; 44(29):4490-527. · 11.34 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014