An interdisciplinary systems approach to study sperm physiology and evolution

The Institute of Engineering in Medicine, University of California, San Diego, CA, USA.
Wiley Interdisciplinary Reviews Systems Biology and Medicine (Impact Factor: 3.21). 01/2011; 3(1):36-47. DOI: 10.1002/wsbm.106
Source: PubMed


Optical trapping is a noninvasive biophotonic tool that has been developed to study the physiological and biomechanical properties of cells. The custom-designed optical system is built to direct near-infrared laser light into an inverted microscope to create a single-point three-dimensional gradient laser trap at the microscope focal point. A real-time automated tracking and trapping system (RATTS) is described that provides a remote user-friendly robotic interface. The combination of laser tweezers, fluorescent imaging, and RATTS can measure sperm swimming speed and swimming force simultaneously with mitochondrial membrane potential (MMP). The roles of two sources of adenosine triphosphate in sperm motility/energetics are studied: oxidative phosphorylation, which occurs in the mitochondria located in the sperm midpiece, and glycolysis, which occurs along the length of the sperm tail (flagellum). The effects of glucose, oxidative phosphorylation inhibitors, and glycolytic inhibitors on human sperm motility are studied. This combination of photonic physical and engineering tools has been used to examine the evolutionary effect of sperm competition in primates. The results demonstrate a correlation between mating type and sperm motility: sperm from polygamous (multi-partner) primate species swim faster and with greater force than sperm from polygynous (single partner) primate species. In summary, engineering and biological systems are combined to provide a powerful interdisciplinary approach to study the complex biological systems that drive the sperm toward the egg.

10 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite advantages of in vitro embryo production in many species, widespread use of this technology is limited by generally lower developmental competence of in vitro derived embryos compared to in vivo counterparts. Regardless, in vivo or in vitro gametes and embryos face and must adjust to multiple microenvironments especially at preimplantation stages. Moreover, the embryo has to be able to further adapt to environmental cues in utero to result in the birth of live and healthy offspring. Enormous strides have been made in understanding and meeting stage-specific requirements of preimplantation embryos, but interpretation of the data is made difficult due to the complexity of the wide array of culture systems and the remarkable plasticity of developing embryos that seem able to develop under a variety of conditions. Nevertheless, a primary objective remains meeting, as closely as possible, the preimplantation embryo requirements as provided in vivo. In general, oocytes and embryos develop more satisfactorily when cultured in groups. However, optimization of individual culture of oocytes and embryos is an important goal and area of intensive current research for both animal and human clinical application. Successful culture of individual embryos is of primary importance in order to avoid ovarian superstimulation and the associated physiological and psychological disadvantages for patients. This review emphasizes stage specific shifts in embryo metabolism and requirements and research to optimize in vitro embryo culture conditions and supplementation, with a view to optimizing embryo culture in general, and culture of single embryos in particular.
    Journal of Assisted Reproduction and Genetics 04/2014; 31(4):393-409. DOI:10.1007/s10815-014-0179-2 · 1.72 Impact Factor

Similar Publications