Application of phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers.

Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA.
Molecular Therapy (Impact Factor: 6.43). 11/2010; 19(2):386-94. DOI: 10.1038/mt.2010.243
Source: PubMed

ABSTRACT Ovarian cancer is a highly metastatic and lethal disease, making it imperative to find treatments that target late-stage malignant tumors. The packaging RNA (pRNA) of bacteriophage phi29 DNA-packaging motor has been reported to function as a highly versatile vehicle to carry small interference RNA (siRNA) for silencing of survivin. In this article, we explore the potential of pRNA as a vehicle to carry siRNA specifically targeted to metallothionein-IIa (MT-IIA) messenger RNA (mRNA), and compare it to survivin targeting pRNA. These two anti-apoptotic cell survival factors promote tumor cell viability, and are overexpressed in recurrent tumors. We find that pRNA chimeras targeting MT-IIA are processed into double-stranded siRNA by dicer, are localized within the GW/P-bodies, and are more potent than siRNA alone in silencing MT-IIA expression. Moreover, knockdown of both survivin and MT-IIA expression simultaneously results in more potent effects on cell proliferation in the aggressive ovarian tumor cell lines than either alone, suggesting that therapeutic approaches that target multiple genes are essential for molecular therapy. The folate receptor-targeted delivery of siRNA by the folate-pRNA dimer emphasizes the cancer cell-specific aspect of this system. The pRNA system, which has the capability to assemble into multivalent nanoparticles, has immense promise as a highly potent therapeutic agent.


Available from: Pheruza Tarapore, May 07, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because adhesion of leukocytes to endothelial cells is the first step of vascular-neuronal inflammation, inhibition of adhesion and recruitment of leukocytes to vascular endothelial cells will have a beneficial effect on neuroinflammatory diseases. In this study, we used the pRNA of bacteriophage phi29 DNA packaging motor to construct a novel RNA nanoparticle for specific targeting to transferrin receptor (TfR) on the murine brain-derived endothelial cells (bEND5) to deliver ICAM-1 siRNA. This RNA nanoparticle (FRS-NPs) contained a FB4 aptamer targeting to TfR and a siRNA moiety for silencing the intercellular adhesion molecule-1 (ICAM-1). Our data indicated that this RNA nanoparticle was delivered into murine brain-derived endothelial cells. Furthermore, the siRNA was released from the FRS-NPs in the cells and knocked down ICAM-1 expression in the TNF-α-stimulated cells and in the cells under oxygen-glucose deprivation/reoxygenation (OGD/R) condition. The functional end points of the study indicated that FRS-NPs significantly inhibited monocyte adhesion to the bEND5 cells induced by TNF-α and OGD/R. In conclusion, our approach using RNA nanotechnology for siRNA delivery could be potentially applied for inhibition of inflammation in ischemic stroke and other neuroinflammatory diseases, or diseases affecting endothelium of vasculature.
    11/2014; 3:e209. DOI:10.1038/mtna.2014.60
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success. Copyright © 2015 Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA-DNA hybrids aimed to conditionally activate multiple split functionalities inside cells.
    Nano Letters 09/2014; 14(10). DOI:10.1021/nl502385k · 12.94 Impact Factor