Inhibition of CYP3A mRNA and protein expression, and enzymatic activity, by enrofloxacin in chickens

Institute of Hygiene and Environmental Medicine, Academy of Military Medical Sciences, Tianjin, China.
Journal of Veterinary Pharmacology and Therapeutics (Impact Factor: 1.19). 12/2010; 33(6):546-50. DOI: 10.1111/j.1365-2885.2010.01175.x
Source: PubMed

ABSTRACT This study was to investigate the effect of enrofloxacin (EF) on CYP3A in chicken by using quantitative reverse transcription-polymerase chain reaction and immunodetected. The treated chickens were given 5, 25 and 125 mg/kg of EF while the control chickens were treated with the same volume saline. There was no significant difference between the low dose group and controls in the concentration of hepatic microsome protein and total CYP content, while the middle and high dose EF caused the down regulation. Depression of the CYP3A activity, mRNA and protein were observed in treated chickens, and the inhibition degree was different from each group. It was concluded that EF caused the inhibition of CYP3A both in genetic transcription and protein levels. But the inhibition metabolism still needs further researches.

8 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Yanhusuo (Corydalis yanhusuo W.T. Wang; YHS), is a well-known traditional Chinese herbal medicine, has been used in China for treating pain including chest pain, epigastric pain, and dysmenorrhea. Its alkaloid ingredients including tetrahydropalmatine are reported to inhibit cytochromes P450 (CYPs) activity in vitro. The present study is aimed to assess the potential of total alkaloid extract (TAE) from YHS to effect the activity and mRNA levels of five cytochromes P450 (CYPs) in rat. Methods Rats were administered TAE from YHS (0, 6, 30, and 150 mg/kg, daily) for 14 days, alanine aminotransferase (ALT) levels in serum were assayed, and hematoxylin and eosin-stained sections of the liver were prepared for light microscopy. The effects of TAE on five CYPs activity and mRNA levels were quantitated by cocktail probe drugs using a rapid chromatography/tandem mass spectrometry (LC-MS/MS) method and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Results In general, serum ALT levels showed no significant changes, and the histopathology appeared largely normal compared with that in the control rats. At 30 and 150 mg/kg TAE dosages, an increase in liver CYP2E1 and CYP3A1 enzyme activity were observed. Moreover, the mRNA levels of CYP2E1 and CYP3A1 in the rat liver, lung, and intestine were significantly up-regulated with TAE from 6 and 30 mg/kg, respectively. Furthermore, treatment with TAE (150 mg/kg) enhanced the activities and the mRNA levels of CYP1A2 and CYP2C11 in rats. However, the activity or mRNA level of CYP2D1 remained unchanged. Conclusions These results suggest that TAE-induced CYPs activity in the rat liver results from the elevated mRNA levels of CYPs. Co-administration of prescriptions containing YHS should consider a potential herb (drug)–drug interaction mediated by the induction of CYP2E1 and CYP3A1 enzymes.
    BMC Complementary and Alternative Medicine 08/2014; 14(1):306. DOI:10.1186/1472-6882-14-306 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pharmacokinetic drug-drug interactions (in particular at metabolism) may result in fatal adverse effects in some cases. This basic information, therefore, is needed for drug therapy even in veterinary medicine; as multidrug therapy is not rare in canines and felines. The aim of this review was focused on possible drug-drug interactions in dogs and cats. The interaction includes enzyme induction by phenobarbital, enzyme inhibition by ketoconazole and fluoroquinolones, and down-regulation of enzymes by dexamethasone. A final conclusion based upon the available literatures and author’s experience is given at the end of the review.
    Journal of Advanced Research 02/2015; 58(3). DOI:10.1016/j.jare.2015.02.003