Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure.

The Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2010; 107(47):20447-52. DOI: 10.1073/pnas.1009968107
Source: PubMed

ABSTRACT Recent studies have identified cortical sinuses as sites of sphingosine-1-phosphate receptor-1 (S1P(1))-dependent T- and B-cell egress from the lymph node (LN) parenchyma. However, the distribution of cortical sinuses in the entire LN and the extent of lymph flow within them has been unclear. Using 3D reconstruction and intravital two-photon microscopy we describe the branched organization of the cortical sinus network within the inguinal LN and show that lymphocyte flow begins within blunt-ended sinuses. Many cortical sinuses are situated adjacent to high endothelial venules, and some lymphocytes access these sinuses within minutes of entering a LN. However, upon entry to inflamed LNs, lymphocytes rapidly up-regulate CD69 and are prevented from accessing cortical sinuses. Using the LN reconstruction data and knowledge of lymphocyte migration and cortical sinus entry dynamics, we developed a mathematical model of T-cell egress from LNs. The model suggests that random walk encounters with lymphatic sinuses are the major factor contributing to LN transit times. A slight discrepancy between predictions of the model and the measured transit times may be explained by lymphocytes undergoing a few rounds of migration between the parenchyma and sinuses before departing from the LN. Because large soluble antigens gain rapid access to cortical sinuses, such parenchyma-sinus shuttling may facilitate antibody responses.

Download full-text


Available from: Irina L. Grigorova, Jun 26, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are well established as potent antigen-presenting cells critical to adaptive immunity. In vaccination approaches, appropriately stimulating lymph node-resident DCs (LNDCs) is highly relevant to effective immunization. Although LNDCs have been implicated in immune response, their ability to directly drive effective immunity to lymph-borne antigen remains unclear. Using an inactive influenza vaccine model and whole node imaging approaches, we observed surprising responsiveness of LNDC populations to vaccine arrival resulting in a transnodal repositioning into specific antigen collection sites within minutes after immunization. Once there, LNDCs acquired viral antigen and initiated activation of viral specific CD4(+) T cells, resulting in germinal center formation and B cell memory in the absence of skin migratory DCs. Together, these results demonstrate an unexpected stimulatory role for LNDCs where they are capable of rapidly locating viral antigen, driving early activation of T cell populations, and independently establishing functional immune response.
    Journal of Experimental Medicine 07/2014; 211(8). DOI:10.1084/jem.20132327 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine-1-phosphate (S1P) is a central factor responsible for lymphocyte distribution in the body. S1P is able to control the integrity of various effector cell populations within many lymphoid tissues by directing lymphocyte egress. In this review, we give an overview of the generation and degradation of S1P in specific lymphoid microenvironments. Furthermore, we discuss, sometimes contradictory, the functions of the five S1P receptors on different cells in diverse tissues and give an idea of additional counteracting chemotactic signals for lymphocyte immigration and emigration. We focus special attention to recent discoveries of S1P-specific transporters, like spinster-homolog-2 and the active secretion of S1P by endothelial cells, erythrocytes and platelets. In addition, we describe the microanatomical structures as well as entry and egress routes into lymphoid organs which lymphocytes use for efficient trafficking. Finally, we give an overview of open questions regarding the regulation of lymphocyte homing from primary lymphoid organs to secondary lymphoid organs and back again.
    Archivum Immunologiae et Therapiae Experimentalis 11/2013; 62(2). DOI:10.1007/s00005-013-0264-8 · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lymphatic vasculature provides routes for dendritic cell and lymphocyte migration into and out of lymph nodes. Lymphatic endothelial cells (LEC) control these processes by expression of CCL21, sphingosine-1-phosphate, and adhesion molecules. LEC express MHC-I and MHC-II, but not costimulatory molecules, and present antigen on MHC-I via both direct and cross-presentation. Whether LEC present to CD4 T cells on MHC-II is unknown. Interestingly, LEC express antigens otherwise restricted to a small number of peripheral tissues in an autoimmune regulatory element-independent manner. Direct presentation of peripheral tissue antigens (PTA) to CD8 T cells results in abortive proliferation and deletion, due to both a lack of costimulation and active PD-L1 engagement. Autoimmunity develops when deletion is subverted, suggesting that LEC presentation of PTA could lead to human disease if PD-1 signaling were impaired by genetic polymorphisms, or aberrant costimulation occurred during inflammation. The expression of additional inhibitory molecules, which are not involved in LEC-mediated deletion, suggests that LEC may have additional immunoregulatory roles. LEC express receptors for several immunomodulatory molecules whose engagement alters their phenotype and function. In this review we describe the role of LEC in distinct anatomical locations in controlling immune cell trafficking, as well as their emerging role in the regulation of T cell tolerance and immunity.
    Frontiers in Immunology 09/2012; 3:305. DOI:10.3389/fimmu.2012.00305