Article

Evolution of yeast noncoding RNAs reveals an alternative mechanism for widespread intron loss.

Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-2200, USA.
Science (Impact Factor: 31.48). 11/2010; 330(6005):838-41. DOI: 10.1126/science.1194554
Source: PubMed

ABSTRACT The evolutionary forces responsible for intron loss are unresolved. Whereas research has focused on protein-coding genes, here we analyze noncoding small nucleolar RNA (snoRNA) genes in which introns, rather than exons, are typically the functional elements. Within the yeast lineage exemplified by the human pathogen Candida albicans, we find--through deep RNA sequencing and genome-wide annotation of splice junctions--extreme compaction and loss of associated exons, but retention of snoRNAs within introns. In the Saccharomyces yeast lineage, however, we find it is the introns that have been lost through widespread degeneration of splicing signals. This intron loss, perhaps facilitated by innovations in snoRNA processing, is distinct from that observed in protein-coding genes with respect to both mechanism and evolutionary timing.

0 Bookmarks
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Although Candida albicans and Candida dubliniensis are most closely related, both species behave significantly different with respect to morphogenesis and virulence. In order to gain further insight into the divergent routes for morphogenetic adaptation in both species, we investigated qualitative along with quantitative differences in the transcriptomes of both organisms by cDNA deep sequencing. RESULTS: Following genome-associated assembly of sequence reads we were able to generate experimentally verified databases containing 6016 and 5972 genes for C. albicans and C. dubliniensis, respectively. About 95% of the transcriptionally active regions (TARs) contain open reading frames while the remaining TARs most likely represent non-coding RNAs. Comparison of our annotations with publically available gene models for C. albicans and C. dubliniensis confirmed approximately 95% of already predicted genes, but also revealed so far unknown novel TARs in both species. Qualitative cross-species analysis of these databases revealed in addition to 5802 orthologs also 399 and 49 species-specific protein coding genes for C. albicans and C. dubliniensis, respectively. Furthermore, quantitative transcriptional profiling using RNA-Seq revealed significant differences in the expression of orthologs across both species. We defined a core subset of 84 hyphal-specific genes required for both species, as well as a set of 42 genes that seem to be specifically induced during hyphal morphogenesis in C. albicans. CONCLUSIONS: Species-specific adaptation in C. albicans and C. dubliniensis is governed by individual genetic repertoires but also by altered regulation of conserved orthologs on the transcriptional level.
    BMC Genomics 04/2013; 14(1):212. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans is an opportunistic human fungal pathogen that causes candidiasis. As healthcare has been improved worldwide, the number of immunocompromised patients has been increased to a greater extent and they are highly susceptible to various pathogenic microbes and C. albicans has been prominent among the fungal pathogens. The complete genome sequence of this pathogen is now available and has been extremely useful for the identification of repertoire of genes present in this pathogen. The major challenge is now to assign the functions to these genes of which 13% are specific to C. albicans. Due to its close relationship with yeast Saccharomyces cerevisiae, an edge over other fungal pathogens because most of the technologies can be directly transferred to C. albicans from S. cerevisiae and it is amenable to mutation, gene disruption, and transformation. The last two decades have witnessed enormous amount of research activities on this pathogen that leads to the understanding of host-parasite interaction, infections, and disease propagation. Clearly, C. albicans has emerged as a model organism for studying fungal pathogens along with other two fungi Aspergillus fumigatus and Cryptococcus neoformans. Understanding its complete life style of C. albicans will undoubtedly be useful for developing potential antifungal drugs and tackling Candida infections. This will also shed light on the functioning of other fungal pathogens.
    ISRN microbiology. 01/2012; 2012:538694.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The selectivity with which a biomolecule can bind its cognate ligand when confronted by the vast array of structurally similar, competing ligands that are present in the cell underlies the fidelity of some of the most fundamental processes in biology. Because they collectively comprise one of only a few methods that can sensitively detect the 'encounter' complexes and subsequent intermediate states that regulate the selectivity of ligand binding, single-molecule fluorescence, and particularly single-molecule fluorescence resonance energy transfer (smFRET), approaches have revolutionized studies of ligand-binding reactions. Here, we describe a widely used smFRET strategy that enables investigations of a large variety of ligand-binding reactions, and discuss two such reactions, aminoacyl-tRNA selection during translation elongation and splice site selection during spliceosome assembly, that highlight both the successes and challenges of smFRET studies of ligand-binding reactions. We conclude by reviewing a number of emerging experimental and computational approaches that are expanding the capabilities of smFRET approaches for studies of ligand-binding reactions and that promise to reveal the mechanisms that control the selectivity of ligand binding with unprecedented resolution.
    FEBS Letters 07/2014; 588(19). · 3.34 Impact Factor

Preview

Download
0 Downloads
Available from