Article

Comparison of the Surgical Pleth Index (TM) with haemodynamic variables to assess nociception-anti-nociception balance during general anaesthesia

Department of Anaesthesia and Intensive Care Medicine, CHU Liege, Liege, Belgium.
BJA British Journal of Anaesthesia (Impact Factor: 4.35). 11/2010; 106(1):101-11. DOI: 10.1093/bja/aeq291
Source: PubMed

ABSTRACT The Surgical Pleth Index (SPI) is proposed as a means to assess the balance between noxious stimulation and the anti-nociceptive effects of anaesthesia. In this study, we compared SPI, mean arterial pressure (MAP), and heart rate (HR) as a means of assessing this balance.
We studied a standard stimulus [head-holder insertion (HHI)] and varying remifentanil concentrations (CeREMI) in a group of patients undergoing neurosurgery. Patients receiving target-controlled infusions were randomly assigned to one of the three CeREMI (2, 4, or 6 ng m⁻¹), whereas propofol target was fixed at 3 µg ml⁻¹. Steady state for both targets was achieved before HHI. Intravascular volume status (IVS) was evaluated using respiratory variations in arterial pressure. Prediction probability (Pk) and ordinal regression were used to assess SPI, MAP, and HR performance at indicating CeREMI, and the influence of IVS and chronic treatment for high arterial pressure, as possible confounding factors.
The maximum SPI, MAP, or HR observed after HHI correctly indicated CeREMI in one of the two patients [accurate prediction rate (APR)=0.5]. When IVS and chronic treatment for high arterial pressure were taken into account, the APR was 0.6 for each individual variable and 0.8 when all of them predicted the same CeREMI. That increase in APR paralleled an increase in Pk from 0.63 to 0.89.
SPI, HR, and MAP are of comparable value at gauging noxious stimulation-CeREMI balance. Their interpretation is improved by taking account of IVS, treatment for chronic high arterial pressure, and concordance between their predictions.

1 Follower
 · 
149 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.
    Journal of Anaesthesiology Clinical Pharmacology 01/2015; 31(1):14. DOI:10.4103/0970-9185.150521
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Even extremely high-doses of the potent opioid, sufentanil, cannot reliably suppress stress responses to intense surgical stimuli such as sternotomy. The chemically related opioid remifentanil with its different pharmacokinetics and binding affinities for delta- and kappa-opioid receptors might be more effective in attenuating these responses. ASA I-III patients scheduled for a surgical procedure with sternotomy under balanced anesthesia (sevoflurane and sufentanil 3 μg.kg(-1) bolus, 0.017 μg.kg(-1).min(-1) infusion) were randomized into two groups. Patients in the study group were supplemented with remifentanil (2 μg.kg(-1) bolus, 2-7 μg.kg(-1).min(-1) infusion) starting ten minutes before sternotomy. Heart rate, arterial blood pressures, cardiac index, ejection fraction, systemic vascular resistance index (SVRI), total body oxygen uptake (VO2) and electric dermal response were measured and compared between the groups. 62 patients were studied (study group 32, control group 30). Systolic and mean arterial blood pressures, SVRI, VO2 and skin conductance increased during sternotomy and sternal spread in the control group but not in the study group. Systolic blood pressure increase: 7.5 ± 19 mmHg vs. -3.4 ± 8.9 (p = 0.005); VO2 increase: 31 ± 46% vs. -0.4 ± 32%; incidence of systolic blood pressure increase greater than 15 percent: 20% vs. 3% (p = 0.035) (control vs. study group). High-dose remifentanil added to sevoflurane-sufentanil anesthesia suppresses the sympathoadrenergic response to sternotomy and sternal spread better than high-dose sufentanil alone. DRKS00004327, August 31, 2012.
    BMC Anesthesiology 01/2015; 15(1):3. DOI:10.1186/1471-2253-15-3 · 1.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anesthesia results from several inhibitor processes, which interact to lead to loss of consciousness, amnesia, immobility, and analgesia. The anesthetic agents act on the whole brain, the cortical and subcortical areas according to their receptor targets. The conscious processes are rather integrated at the level of the cortical neuronal network, while the nonconscious processes such as the nociception or implicit memory require subcortical processing. A reliable and meaningful monitoring of depth of anesthesia should provide assessment of these different processes. Besides the EEG monitoring which gives mainly information on cortical anesthetic effects, it would be relevant to have also a subcortical feedback allowing an assessment of nociception. Several devices have been proposed in this last decade, to give us an idea of the analgesia/nociception balance. Up to now, most of them are based on the assessment of the autonomic response to noxious stimulation. Among the emerging clinical devices, we can mention those which assess vascular sympathetic response (skin conductance), cardiac and vascular sympathetic response (surgical pleth index), parasympathetic cardiac response (analgesia nociception index), and finally the pupillometry which is based on the assessment of the pupillary reflex dilatation induced by nociceptive stimulations. Basically, the skin conductance might be the most adapted to assess the stress in the awake or sedated neonate, while the performances of this method appear disappointing under anesthesia. The surgical pleth index is still poorly investigated in children. The analgesia nociception index showed promising results in adults, which have to be confirmed, especially in children and in infants, and lastly pupillometry, which can be considered as reliable and reactive in children as in adults, but which is still sometimes complicated in its use. © 2014 John Wiley & Sons Ltd.
    Pediatric Anesthesia 01/2015; 25(1):73-82. DOI:10.1111/pan.12586 · 1.74 Impact Factor

Full-text

Download
96 Downloads
Available from
May 28, 2014