Article

hSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex.

Signal Transduction Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia.
Nucleic Acids Research (Impact Factor: 8.81). 11/2010; 39(5):1692-702. DOI: 10.1093/nar/gkq1098
Source: PubMed

ABSTRACT hSSB1 is a newly discovered single-stranded DNA (ssDNA)-binding protein that is essential for efficient DNA double-strand break signalling through ATM. However, the mechanism by which hSSB1 functions to allow efficient signalling is unknown. Here, we show that hSSB1 is recruited rapidly to sites of double-strand DNA breaks (DSBs) in all interphase cells (G1, S and G2) independently of, CtIP, MDC1 and the MRN complex (Rad50, Mre11, NBS1). However expansion of hSSB1 from the DSB site requires the function of MRN. Strikingly, silencing of hSSB1 prevents foci formation as well as recruitment of MRN to sites of DSBs and leads to a subsequent defect in resection of DSBs as evident by defective RPA and ssDNA generation. Our data suggests that hSSB1 functions upstream of MRN to promote its recruitment at DSBs and is required for efficient resection of DSBs. These findings, together with previous work establish essential roles of hSSB1 in controlling ATM activation and activity, and subsequent DSB resection and homologous recombination (HR).

0 Bookmarks
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NAPB2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
    Nucleic Acids Research 04/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell's genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.
    Frontiers in Oncology 01/2014; 4:86.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oligonucleotide/oligosaccharide-binding (OB) fold is a ssDNA or RNA binding motif in prokaryotes and eukaryotes. Unexpectedly, we found that the OB fold of human ssDNA-binding protein 1 (hSSB1) is a poly(ADP ribose) (PAR) binding domain. hSSB1 exhibits high-affinity binding to PAR and recognizes iso-ADP ribose (ADPR), the linkage between two ADPR units. This interaction between PAR and hSSB1 mediates the early recruitment of hSSB1 to the sites of DNA damage. Mutations in the OB fold of hSSB1 that disrupt PAR binding abolish the relocation of hSSB1 to the sites of DNA damage. Moreover, PAR-mediated recruitment of hSSB1 is important for early DNA damage repair. We have screened other OB folds and found that several other OB folds also recognize PAR. Taken together, our study reveals a PAR-binding domain that mediates DNA damage repair.
    Proceedings of the National Academy of Sciences 05/2014; · 9.81 Impact Factor

Full-text (2 Sources)

View
26 Downloads
Available from
May 30, 2014