Preparation and characterization of silver nanoparticles by chemical reduction method

Department of Chemistry, Faculty of Science, King Abdul Aziz University, P.O. Box 80203, Jeddah 21413, Saudi Arabia.
Colloids and surfaces B: Biointerfaces (Impact Factor: 4.15). 10/2010; 82(2):513-7. DOI: 10.1016/j.colsurfb.2010.10.008
Source: PubMed


Silver nanoparticles were prepared by the reduction of AgNO(3) with aniline in dilute aqueous solutions containing cetyltrimethlyammonium bromide, CTAB. Nanoparticles growth was assessed by UV-vis spectroscopy and the average particle size and the size distribution were determined from transmission electron microscopy, TEM. As the reaction proceeds, a typical plasmon absorption band at 390-450nm appears for the silver nanoparticles and the intensities increase with the time. Effects of [aniline], [CTAB] and [Ag(+)] on the particle formation rate were analyzed. The apparent rate constants for the formation of silver nanoparticles first increased until it reached a maximum then decreased with [aniline]. TEM photographs indicate that the silver sol consist of well dispersed agglomerates of spherical shape nanoparticles with particle size range from 10 to 30nm. Aniline concentrations have no significant effect on the shape, size and the size distribution of Ag-nanoparticles. Aniline acts as a reducing as well as adsorbing agent in the preparation of roughly spherical, agglomerated and face-centered-cubic silver nanoparticles.

Download full-text


Available from: Abdulrahman Al-youbi, Oct 01, 2015
836 Reads
  • Source
    • "The silver colloid was prepared by a chemical reduction method [37] [38]. Silver nitrate AgNO 3 and disodium citrate C 6 H 6 O 7 Na 2 of analytical grade purity were used as starting materials without further purification. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study deals with first attempt to introduce safranin O as the fluorophore for peroxyoxalate chemiluminescence system. The reaction of bis-(2,4,6-trichlorophenyl) oxalate (TCPO) with H2O2 catalyzed by silver nanoparticles can transfer energy to safranin O via the formation of dioxetanedione intermediate and emits orange-red light. The relationship between CL intensity and the concentration of TCPO, fluorophore, hydrogen peroxide and nanocatalyst was investigated. The Ag nanoparticles were synthesized by chemical reduction method and characterized using scanning electron microscopy, particle size analyzer and UV-spectroscopy. Moreover, the system was applied successfully to detect a drug, 6-mercaptopurine (6-MP) in pharmaceuticals. Under optimum conditions, a linear working range for 6-MP concentrations from 5.5×10(-7) to 5.5×10(-5)molL(-1) (r>0.9831, n=6) was obtained with a detection limit of 1.6×10(-7)molL(-1). The relative standard deviation for 6 repetitive determinations was less than 3.8% and recoveries of 98% and 103% were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
    Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 03/2015; 145:454-460. DOI:10.1016/j.saa.2015.03.019 · 2.35 Impact Factor
  • Source
    • "Within the last two decades, several techniques have been developed for producing nanoparticles with controlled sizes, phases, shapes, and some other properties. These techniques include chemical method, thermal evaporation and condensation , milling, and sputtering [9] [10] [11] [12] [13]. Unfortunately, these synthesis methods are relatively expensive and often agglomerated particles with sizes up to several micrometers are formed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.
    Applied Surface Science 02/2015; 329:47-57. DOI:10.1016/j.apsusc.2014.12.069 · 2.71 Impact Factor
  • Source
    • "Recently,42 aniline was used as a stabilizer for controlling the morphology and particle size of AgNPs using hydrazine and sodium citrate as the reducing agents. Later, Hussain et al43 used aniline in the presence of cetyltrimethylammonium bromide as a simple chemical reduction aniline route for the synthesis of silver nanocrystals. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A new method for preparation of silver nanoparticles (AgNPs) based on using hydrazino-isatin derivatives in an aqueous methanol reaction medium is reported here. AgNPs were prepared using silver nitrate solubilized in a water core as the source of silver ions and 3-hydrazino-isatin derivatives (3-hydrazino-isatin [IsH] and 1-benzyl-3-hydrazino-isatin [BIsH]) solubilized in methanol core as a reducing agent. The proposed method is effective, rapid, and convenient. X-ray diffraction (XRD), energy dispersive X-ray analysis, scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used for characterization of the AgNPs. The TEM micrographs confirmed that the nanopowders consist of well-dispersed agglomerates of grains with a narrow size distribution of 18-21 nm and 17-20 nm. The AgNPs, as well as BIsH, showed high antimicrobial and bactericidal activity against the Gram-positive Bacillus subtilis and Gram-negative Micrococcus luteus and Proteus vulgaris, as well as antifungal activities against Saccharomyces cerevisiae. On the other hand, they were not effective against the Gram-negative Escherichia coli. A simple, effective, rapid, and convenient chemical reduction method for the synthesis of AgNPs in an aqueous methanol reaction medium using hydrazino-isatin derivatives and studying their antibacterial effect. IsH and BIsH are remarkably powerful reductants for Ag+ ions in an aqueous methanol medium, which could be considered as a simple chemical reduction method for formation of AgNPs. The AgNP formation depends on the solubility of the hydrazino-isatin derivatives. BIsH gave more AgNPs than IsH, as observed from XRD. The formation of AgNPs is attributed to the adsorption of hydrazine derivatives and/or interparticle interaction on the surface of AgNP through electrostatic interactions between the lone pair electrons of the hydrazino group (C=N-NH2) and the positive surface of AgNPs. AgNPs and BIsH showed high antimicrobial and bacterial activity. In summary, it is shown that IsH and BIsH are remarkably powerful reductants for Ag+ ions in an aqueous methanol medium. BIsH gave more AgNPs than IsH, as observed from XRD due to better solubility of the BIsH than IsH in aqueous-methanol. The formation of AgNPs is attributed to the adsorption of hydrazine derivatives and/or interparticle interaction on the surface of AgNPs through electrostatic interactions between the lone pair electrons of the hydrazino group (C=N-NH2) and the positive surface of AgNPs. The AgNps as well as BIsH ligand showed high antimicrobial and bactericidal activity.
    International Journal of Nanomedicine 03/2014; 9(1):1167-74. DOI:10.2147/IJN.S58571 · 4.38 Impact Factor
Show more