Article

A genome-wide association study identifies RNF213 as the first Moyamoya disease gene

Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan.
Journal of Human Genetics (Impact Factor: 2.53). 11/2010; 56(1):34-40. DOI: 10.1038/jhg.2010.132
Source: PubMed

ABSTRACT Moyamoya disease (MMD) shows progressive cerebral angiopathy characterized by bilateral internal carotid artery stenosis and abnormal collateral vessels. Although ∼ 15% of MMD cases are familial, the MMD gene(s) remain unknown. A genome-wide association study of 785,720 single-nucleotide polymorphisms (SNPs) was performed, comparing 72 Japanese MMD patients with 45 Japanese controls and resulting in a strong association of chromosome 17q25-ter with MMD risk. This result was further confirmed by a locus-specific association study using 335 SNPs in the 17q25-ter region. A single haplotype consisting of seven SNPs at the RNF213 locus was tightly associated with MMD (P = 5.3 × 10(-10)). RNF213 encodes a really interesting new gene finger protein with an AAA ATPase domain and is abundantly expressed in spleen and leukocytes. An RNA in situ hybridization analysis of mouse tissues indicated that mature lymphocytes express higher levels of Rnf213 mRNA than their immature counterparts. Mutational analysis of RNF213 revealed a founder mutation, p.R4859K, in 95% of MMD families, 73% of non-familial MMD cases and 1.4% of controls; this mutation greatly increases the risk of MMD (P = 1.2 × 10(-43), odds ratio = 190.8, 95% confidence interval = 71.7-507.9). Three additional missense mutations were identified in the p.R4859K-negative patients. These results indicate that RNF213 is the first identified susceptibility gene for MMD.

0 Followers
 · 
207 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurovascular diseases are among the leading causes of mortality and permanent disability due to stroke, aneurysm, and other cardiovascular complications. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Marfan syndrome are two neurovascular disorders that affect smooth muscle cells through accumulation of granule and osmiophilic materials and defective elastic fiber formations respectively. Moyamoya disease, hereditary hemorrhagic telangiectasia (HHT), microcephalic osteodysplastic primordial dwarfism type II (MOPD II), and Fabry's disease are disorders that affect the endothelium cells of blood vessels through occlusion or abnormal development. While much research has been done on mapping out mutations in these diseases, the exact mechanisms are still largely unknown. This paper briefly introduces the pathogenesis, genetics, clinical symptoms, and current methods of treatment of the diseases in the hope that it can help us better understand the mechanism of these diseases and work on ways to develop better diagnosis and treatment.
    Metabolic Brain Disease 04/2015; DOI:10.1007/s11011-015-9668-y · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Moyamoya is a cerebrovascular angiopathy characterized by a progressive stenosis of the terminal part of the intracranial carotid arteries and the compensatory development of abnormal and fragile collateral vessels, also called moyamoya vessels, leading to ischemic and hemorrhagic stroke. Moyamoya angiopathy can either be the sole manifestation of the disease (moyamoya disease) or be associated with various conditions, including neurofibromatosis, Down syndrome, TAAD (autosomal-dominant thoracic aortic aneurysm), and radiotherapy of head tumors (moyamoya syndromes). Its prevalence is ten times higher in Japan than in Europe, and an estimated 6%-12% of moyamoya disease is familial in Japan. The pathophysiological mechanisms of this condition remain obscure. Here, we report on three unrelated families affected with an X-linked moyamoya syndrome characterized by the association of a moyamoya angiopathy, short stature, and a stereotyped facial dysmorphism. Other symptoms include an hypergonadotropic hypogonadism, hypertension, dilated cardiomyopathy, premature coronary heart disease, premature hair graying, and early bilateral acquired cataract. We show that this syndromic moyamoya is caused by Xq28 deletions removing MTCP1/MTCP1NB and BRCC3. We also show that brcc3 morphant zebrafish display angiogenesis defects that are rescued by endothelium-specific expression of brcc3. Altogether, these data strongly suggest that BRCC3, a deubiquitinating enzyme that is part of the cellular BRCA1 and BRISC complexes, is an important player in angiogenesis and that BRCC3 loss-of-function mutations are associated with moyamoya angiopathy.
    The American Journal of Human Genetics 06/2011; 88(6):718-28. DOI:10.1016/j.ajhg.2011.04.017 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Moyamoya disease is an idiopathic vascular disorder of intracranial arteries. Its susceptibility locus has been mapped to 17q25.3 in Japanese families, but the susceptibility gene is unknown. Genome-wide linkage analysis in eight three-generation families with moyamoya disease revealed linkage to 17q25.3 (P<10(-4)). Fine mapping demonstrated a 1.5-Mb disease locus bounded by D17S1806 and rs2280147. We conducted exome analysis of the eight index cases in these families, with results filtered through Ng criteria. There was a variant of p.N321S in PCMTD1 and p.R4810K in RNF213 in the 1.5-Mb locus of the eight index cases. The p.N321S variant in PCMTD1 could not be confirmed by the Sanger method. Sequencing RNF213 in 42 index cases confirmed p.R4810K and revealed it to be the only unregistered variant. Genotyping 39 SNPs around RNF213 revealed a founder haplotype transmitted in 42 families. Sequencing the 260-kb region covering the founder haplotype in one index case did not show any coding variants except p.R4810K. A case-control study demonstrated strong association of p.R4810K with moyamoya disease in East Asian populations (251 cases and 707 controls) with an odds ratio of 111.8 (P = 10(-119)). Sequencing of RNF213 in East Asian cases revealed additional novel variants: p.D4863N, p.E4950D, p.A5021V, p.D5160E, and p.E5176G. Among Caucasian cases, variants p.N3962D, p.D4013N, p.R4062Q and p.P4608S were identified. RNF213 encodes a 591-kDa cytosolic protein that possesses two functional domains: a Walker motif and a RING finger domain. These exhibit ATPase and ubiquitin ligase activities. Although the mutant alleles (p.R4810K or p.D4013N in the RING domain) did not affect transcription levels or ubiquitination activity, knockdown of RNF213 in zebrafish caused irregular wall formation in trunk arteries and abnormal sprouting vessels. We provide evidence suggesting, for the first time, the involvement of RNF213 in genetic susceptibility to moyamoya disease.
    PLoS ONE 07/2011; 6(7):e22542. DOI:10.1371/journal.pone.0022542 · 3.53 Impact Factor