Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms.

Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA.
Annual Review of Genetics (Impact Factor: 17.44). 12/2010; 44:189-216. DOI: 10.1146/annurev.genet.40.110405.090412
Source: PubMed

ABSTRACT Changing a single nucleotide in a genome can have profound consequences under some conditions, but the same change can have no consequences under others. Indeed, organisms can be surprisingly robust to environmental and genetic perturbations. Yet, the mechanisms underlying such robustness are controversial. Moreover, how they might affect evolutionary change remains enigmatic. Here, we review the recently appreciated central role of protein homeostasis in buffering and potentiating genetic variation and discuss how these processes mediate the critical influence of the environment on the relationship between genotype and phenotype. Deciphering how robustness emerges from biological organization and the mechanisms by which it is overcome in changing environments will lead to a more complete understanding of both fundamental evolutionary processes and diverse human diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multisubunit protein complexes are essential for cellular function. Genetic analysis of essential processes requires special tools, among which temperature-sensitive (Ts) mutants have historically been crucial. Many researchers assume that the effect of temperature on such mutants is to drive their proteolytic destruction. In fact, degradation-mediated elimination of mutant proteins likely explains only a fraction of the phenotypes associated with Ts mutants. Here I discuss insights gained from analysis of Ts mutants in oligomeric proteins, with particular focus on the study of septins, GTP-binding subunits of cytoskeletal filaments whose structures and functions are the subject of current investigation in my and many other labs. I argue that the kinds of unbiased forward genetic approaches that generate Ts mutants provide information that is largely inaccessible to modern reverse genetic methodologies, and will continue to drive our understanding of higher-order assembly by septins and other oligomeric proteins.
    BioEssays 07/2014; · 5.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution.
    PLoS Computational Biology 06/2014; 10(6):e1003674. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Target identification is a critical step in the lengthy and expensive process of drug development. Here, we describe a genome-wide screening platform that uses systematic overexpression of pooled human ORFs to understand drug mode-of-action and resistance mechanisms. We first calibrated our screen with the well-characterized drug methotrexate. We then identified new genes involved in the bioactivity of diverse drugs including antineoplastic agents and biologically active molecules. Finally, we focused on the transcription factor RHOXF2 whose overexpression conferred resistance to DNA damaging agents. This approach represents an orthogonal method for functional screening and, to our knowledge, has never been reported before.
    Genome Medicine 01/2014; 6(4):32. · 4.94 Impact Factor


Available from