Article

Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms

Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA.
Annual Review of Genetics (Impact Factor: 18.12). 12/2010; 44:189-216. DOI: 10.1146/annurev.genet.40.110405.090412
Source: PubMed

ABSTRACT Changing a single nucleotide in a genome can have profound consequences under some conditions, but the same change can have no consequences under others. Indeed, organisms can be surprisingly robust to environmental and genetic perturbations. Yet, the mechanisms underlying such robustness are controversial. Moreover, how they might affect evolutionary change remains enigmatic. Here, we review the recently appreciated central role of protein homeostasis in buffering and potentiating genetic variation and discuss how these processes mediate the critical influence of the environment on the relationship between genotype and phenotype. Deciphering how robustness emerges from biological organization and the mechanisms by which it is overcome in changing environments will lead to a more complete understanding of both fundamental evolutionary processes and diverse human diseases.

Download full-text

Full-text

Available from: Daniel Jarosz, Feb 26, 2015
0 Followers
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aneuploidy is a hallmark of cancer and is associated with malignancy and poor prognosis. Recent studies have revealed that aneuploidy inhibits proliferation, causes distinct alterations in the transcriptome and proteome and disturbs cellular proteostasis. However, the molecular mechanisms underlying the changes in gene expression and the impairment of proteostasis are not understood. Here, we report that human aneuploid cells are impaired in HSP90-mediated protein folding. We show that aneuploidy impairs induction of the heat shock response suggesting that the activity of the transcription factor heat shock factor 1 (HSF1) is compromised. Indeed, increased levels of HSF1 counteract the effects of aneuploidy on HSP90 expression and protein folding, identifying HSF1 overexpression as the first aneuploidy-tolerating mutation in human cells. Thus, impaired HSF1 activity emerges as a critical factor underlying the phenotypes linked to aneuploidy. Finally, we demonstrate that deficient protein folding capacity directly shapes gene expression in aneuploid cells. Our study provides mechanistic insight into the causes of the disturbed proteostasis in aneuploids and deepens our understanding of the role of HSF1 in cytoprotection and carcinogenesis.
    The EMBO Journal 09/2014; DOI:10.15252/embj.201488648 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Cognitive deficits are prominent in schizophrenia and represent promising endophenotypes for genetic research. Methods The current study investigated the importance of two conceptually distinct genetic aggregates, one based on copy number variations (uncommon deletion burden), and one based on single nucleotide polymorphisms identified in recent risk studies (genetic risk score). The impact of these genetic factors, and their interaction, was examined on cognitive endophenotypes defined by principal component analysis (PCA) in a multi-center sample of 50 patients with schizophrenia and 86 controls. PCA was used to identify three different types of executive function (EF: planning, fluency, and inhibition), and in separate analyses, a measure general cognitive ability (GCA). Results Cognitive deficits were prominent among individuals with schizophrenia, but no group differences were evident for either genetic factor. Among patients the deletion burden measures predicted cognitive deficits across the three EF components and GCA. Further, an interaction was noted between the two genetic factors for both EF and GCA and the observed patterns of interaction suggested antagonistic epistasis. In general, the set of genetic interactions examined predicted a substantial portion of variance in these cognitive endophenotypes. Limitations Though adequately powered, our sample size is small for a genetic study. Conclusions These results draw attention to genetic interactions and the possibility that genetic influences on cognition differ in patients and controls.
    Schizophrenia Research 06/2014; 156(1). DOI:10.1016/j.schres.2014.03.022 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal exposure of the developing brain to various environmental challenges increases susceptibility to late onset of neuropsychiatric dysfunction; still, the underlying mechanisms remain obscure. Here we show that exposure of embryos to a variety of environmental factors such as alcohol, methylmercury, and maternal seizure activates HSF1 in cerebral cortical cells. Furthermore, Hsf1 deficiency in the mouse cortex exposed in utero to subthreshold levels of these challenges causes structural abnormalities and increases seizure susceptibility after birth. In addition, we found that human neural progenitor cells differentiated from induced pluripotent stem cells derived from schizophrenia patients show higher variability in the levels of HSF1 activation induced by environmental challenges compared to controls. We propose that HSF1 plays a crucial role in the response of brain cells to prenatal environmental insults and may be a key component in the pathogenesis of late-onset neuropsychiatric disorders.
    Neuron 04/2014; 82(3). DOI:10.1016/j.neuron.2014.03.002 · 15.98 Impact Factor