Ergothioneine Prevents Copper-Induced Oxidative Damage to DNA and Protein by Forming a Redox-Inactive Ergothioneine-Copper Complex

State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
Chemical Research in Toxicology (Impact Factor: 4.19). 11/2010; 24(1):30-4. DOI: 10.1021/tx100214t
Source: PubMed

ABSTRACT Ergothioneine (2-mercaptohistidine trimethylbetaine) is a naturally occurring amino acid analogue found in up to millimolar concentrations in several tissues and biological fluids. However, the biological functions of ergothioneine remain incompletely understood. In this study, we investigated the role of ergothioneine in copper-induced oxidative damage to DNA and protein, using two copper-containing systems: Cu(II) with ascorbate and Cu(II) with H(2)O(2) [0.1 mM Cu(II), 1 mM ascorbate, and 1 mM H(2)O(2)]. Oxidative damage to DNA and bovine serum albumin was measured as strand breakage and protein carbonyl formation, respectively. Ergothioneine (0.1-1.0 mM) provided strong, dose-dependent protection against oxidation of DNA and protein in both copper-containing systems. In contrast, only limited protection was observed with the purported hydroxyl radical scavengers, dimethyl sulfoxide and mannitol, even at concentrations as high as 100 mM. Ergothioneine also significantly inhibited copper-catalyzed oxidation of ascorbate and competed effectively with histidine and 1,10-phenanthroline for binding of cuprous copper, but not cupric copper, as demonstrated by UV-visible and low-temperature electron spin resonance techniques. We conclude that ergothioneine is a potent, natural sulfur-containing antioxidant that prevents copper-dependent oxidative damage to biological macromolecules by forming a redox-inactive ergothioneine-copper complex.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A sensitive analytical method has been developed and validated for the quantification of L-ergothioneine in human plasma and erythrocytes by liquid chromatography-tandem mass spectrometry. A commercially available isotope-labeled L-ergothioneine-d9 is used as the internal standard. A simple protein precipitation with acetonitrile is utilized for bio-sample preparation prior to analysis. Chromatographic separation of L-ergothioneine is conducted using gradient elution on Alltime C18 (150 mm × 2.1 mm, 5 µ). The run time is 6 min at a constant flow rate of 0.45 ml/min. The mass spectrometer is operated under a positive electrospray ionization condition with multiple reaction monitoring mode. The mass transitions of L-ergothioneine and L-ergothioneine-d9 are m/z 230 > 127 and m/z 239 > 127, respectively. Excellent linearity [coefficient of determination (r(2) ) ≥ 0.9998] can be achieved for L-ergothioneine quantification at the ranges of 10 to 10 000 ng/ml, with the intra-day and inter-day precisions at 0.9-3.9% and 1.3-5.7%, respectively, and the accuracies for all quality control samples between 94.5 and 101.0%. This validated analytical method is suitable for pharmacokinetic monitoring of L-ergothioneine in human and erythrocytes. Based on the determination of bio-samples from five healthy subjects, the mean concentrations of L-ergothioneine in plasma and erythrocytes are 107.4 ± 20.5 ng/ml and 1285.0 ± 1363.0 ng/ml, respectively. Copyright © 2013 John Wiley & Sons, Ltd.
    Journal of Mass Spectrometry 03/2013; 48(3):406-412. DOI:10.1002/jms.3150 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance: Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics particularly involving mitochondria-targeted antioxidants have attracted increasing interest as potentially effective therapies for several human diseases. Recent advances: Over the last 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (eg. TPP+) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds and liposomes. Critical issue: This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims to develop compounds capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Future directions: Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules.
    Antioxidants and Redox Signaling 12/2014; 22(8). DOI:10.1089/ars.2014.5952 · 7.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The "double-edged sword" role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review.
    Oxidative Medicine and Cellular Longevity 12/2013; 2013:925804. DOI:10.1155/2013/925804 · 3.36 Impact Factor