Article

Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells.

Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2010; 107(46):19973-8. DOI: 10.1073/pnas.1014051107
Source: PubMed

ABSTRACT Despite their low frequency, plasmacytoid dendritic cells (pDCs) produce most of the type I IFN that is detectable in the blood following viral infection. The endosomal Toll-like receptors (TLRs) TLR7 and TLR9 are required for pDCs, as well as other cell types, to sense viral nucleic acids, but the mechanism by which signaling through these shared receptors results in the prodigious production of type I IFN by pDCs is not understood. We designed a genetic screen to identify proteins required for the development and specialized function of pDCs. One phenovariant, which we named feeble, showed abrogation of both TLR-induced type I IFN and proinflammatory cytokine production by pDCs, while leaving TLR responses intact in other cells. The feeble phenotype was mapped to a mutation in Slc15a4, which encodes the peptide/histidine transporter 1 (PHT1) and has not previously been implicated in pDC function. The identification of the feeble mutation led to our subsequent observations that AP-3, as well as the BLOC-1 and BLOC-2 Hermansky-Pudlak syndrome proteins are essential for pDC signaling through TLR7 and TLR9. These proteins are not necessary for TLR7 or TLR9 signaling in conventional DCs and thus comprise a membrane trafficking pathway uniquely required for endosomal TLR signaling in pDCs.

0 Bookmarks
 · 
109 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cathelicidins are a gene family best known for their antimicrobial action, but the diverse mature peptides they encode also have other host defense functions. The human cathelicidin peptide LL-37 enhances recognition of nucleic acids, an action whose significance is seen in human diseases such as psoriasis where it is associated with increased type 1 IFN production. This function has been attributed to the extracellular action of the peptide to facilitate uptake of nucleic acids. In this study, we demonstrate that the murine mature cathelicidin peptide (CRAMP), encoded by the mouse gene (Camp), is functionally distinct from the human mature peptide (LL-37), as it does not facilitate CpG entry. However, mouse cathelicidin does influence recognition of CpG as bone marrow-derived dendritic cells from Camp(-/-) mice have impaired CpG responses and Camp(-/-) mice had impaired response to CpG given i.v. or s.c. We show that cathelicidin concentrates in Lamp1 positive compartments, is colocalized with CpG in the endolysosome, can be immunoprecipitated with TLR9, and binds to CpG intracellulary. Collectively, these results indicate that the functions of cathelicidin in control of TLR9 activation may include both intracellular and extracellular effects. Copyright © 2014 by The American Association of Immunologists, Inc.
    Journal of immunology (Baltimore, Md. : 1950). 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SLC15A4 is a lysosome-resident, proton-coupled amino-acid transporter that moves histidine and oligopeptides from inside the lysosome to the cytosol of eukaryotic cells. SLC15A4 is required for Toll-like receptor 7 (TLR7)- and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid dendritic cells (pDCs) and is involved in the pathogenesis of certain diseases including lupus-like autoimmunity. How SLC15A4 contributes to diseases is largely unknown. Here we have shown that B cell SLC15A4 was crucial for TLR7-triggered IFN-I and autoantibody productions in a mouse lupus model. SLC15A4 loss disturbed the endolysosomal pH regulation and probably the v-ATPase integrity, and these changes were associated with disruption of the mTOR pathway, leading to failure of the IFN regulatory factor 7 (IRF7)-IFN-I regulatory circuit. Importantly, SLC15A4's transporter activity was necessary for the TLR-triggered cytokine production. Our findings revealed that SLC15A4-mediated optimization of the endolysosomal state is integral to a TLR7-triggered, mTOR-dependent IRF7-IFN-I circuit that leads to autoantibody production.
    Immunity 09/2014; 41(3):375-88. · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adaptor protein-3 (AP-3) is a heterotetrameric complex, which regulates vesicular trafficking. Mutations of the b3A subunit cause the Hermansky–Pudlak syndrome type 2 (HPS-2), a rare genetic disease characterized byalbinism, platelet defects, and recurrent infections. Likewise, pearl mice, which lack functional AP-3, show several HPS-2 defects. The AP-3 absence results in defective TLR trafficking and signaling in dendritic cells (DC), but its effect on the efficiency of the in vivo antiviral response is unclear. We evaluated the impact of AP-3 deficiency on the distribution of DC subsets, interferon (IFN) production, and the susceptibility to murine cytomegalovirus (MCMV) infection. Pearl mice showed a distribution and frequency of conventional (cDC) and plasmacytoid DC (pDC) similar to that of wild-type mice both before and afterMCMV infection.Moreover, pearl mice controlled MCMV infection even at high virus doses and showed a normal production of IFN-a. Since pDC, but not cDC, from pearl mice showed an impaired IFN-a and tumor necrosis factor-a production in response to prototypic DNA (MCMV and Herpes Simplex virus) or RNA (Vesicular Stomatitis virus) viruses in vitro, it is likely that MCMV infection can be controlled in vivo independently of an efficient production of IFN-a by pDC, and that the AP-3 complex has a minimal impact on protective antiviral responses.
    Journal of Interferon & Cytokine Research 10/2014; · 3.90 Impact Factor

Full-text (2 Sources)

Download
20 Downloads
Available from
May 29, 2014