Page 1

Physics Letters B 694 (2011) 327–345

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for quark contact interactions in dijet angular distributions in pp collisions

at√s = 7 TeV measured with the ATLAS detector✩

.ATLAS Collaboration

a r t i c l ei n f oa b s t r a c t

Article history:

Received 27 September 2010

Received in revised form 12 October 2010

Accepted 13 October 2010

Available online 16 October 2010

Editor: H. Weerts

Keywords:

ATLAS

LHC

7 TeV

Dijets angular distributions

Quark compositeness

Contact interactions

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy√s = 7 TeV have been

measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity

of 3.1 pb−1. Dijet χ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV,

and found to be in good agreement with Standard Model predictions. Analysis of the χ distributions

excludes quark contact interactions with a compositeness scale Λ below 3.4 TeV, at 95% confidence level,

significantly exceeding previous limits.

© 2010 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

At hadron colliders, most events with large transverse momen-

tum (pT) transfer occur when a constituent parton from one of

the incoming hadrons scatters from a parton in the other. At high

pT, these ‘2 → 2’ scattering processes are well described within

the Standard Model by perturbative Quantum Chromodynamics

(QCD), the quantum field theory of strong interactions. As each

high-momentum parton emerges from the collision, the subse-

quent parton shower and hadronization create a collimated jet of

particles aligned with the direction of the original parton. In most

of these collisions, two high-pT jets emerge from the interaction.

These ‘dijet’ events are particularly useful for measuring quantities

associated with the initial interaction, such as the polar scattering

angle in the two-parton center-of-mass (CM) frame, θ∗, and the di-

jet invariant mass, mjj. Precise tests of QCD may be carried out by

comparing the theoretical predictions to the experimental distribu-

tions. If discrepancies between data and QCD are found to be well

beyond experimental and theoretical uncertainties, this would in-

dicate that the QCD description needs improvement, or that a new

process, not included in the Standard Model, has appeared.

This analysis focuses on dijet angular distributions, which have

been shown by previous experiments [1–4] to be sensitive mea-

sures for testing the predictions of QCD and searching for new

processes. Dijet angular distributions are well suited to the analysis

✩© CERN, for the benefit of the ATLAS Collaboration.

E-mail address: atlas.publications@cern.ch.

of early LHC data, since they are little affected by the main sys-

tematic uncertainties associated with the jet energy scale (JES) and

the luminosity. QCD calculations predict that high-pT dijet produc-

tion is dominated by t-channel gluon exchange, leading to angular

distributions that are peaked at |cosθ∗| close to 1. By contrast,

models of new processes characteristically predict angular distri-

butions that would be more isotropic than those of QCD.

This Letter reports on the first search with the ATLAS detec-

tor for quark contact interactions leading to modifications of dijet

angular distributions in proton–proton (pp) collisions at a center-

of-mass energy of√s = 7 TeV at the LHC. The data sample repre-

sents an integrated luminosity of 3.1 pb−1, recorded in periods of

stable collisions, through August 2010. The two distributions under

study – dijet χ distributions, and dijet centrality ratios – have been

used repeatedly as benchmark measures, and will be described in

detail below.

The highest exclusion limits on quark contact interactions set

by any previous experiment [4], for several statistical analyses,

ranged from 2.8 to 3.1 TeV at 95% confidence level (CL) for the

compositeness scale Λ.

2. Kinematics and angular distributions

The θ∗distribution for 2 → 2 parton scattering is predicted

by QCD in the partonic CM frame of reference. Event by event,

the momentum fraction (Bjorken x) of one incoming parton dif-

fers from that of the other, causing the partonic reference frame

to be boosted relative to the detector frame by an amount which

can be determined from the dijet kinematics. A natural variable

0370-2693/ © 2010 CERN. Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.physletb.2010.10.021

Page 2

328

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

for analysis of parton–parton interactions is therefore the rapidity,

y =1

momentum, of the given particle. The variable y transforms un-

der Lorentz boosts along the z-direction as y → y − yB= y −

tanh−1(βB), where βB is the velocity of the boosted frame, and

yBis its rapidity boost.

The ATLAS coordinate system is a right-handed Cartesian sys-

tem with the x-axis pointing to the center of the LHC ring, the

z-axis following the counter-clockwise beam direction, and the y-

axis going upwards. The polar angle θ is referred to the z-axis, and

φ is the azimuthal angle about the z-axis.

Rapidity differences are boost invariant, so that under Lorentz

boosts jets retain their shapes in (y,φ) coordinates. The pseudora-

pidity, η = −ln(tan(θ

and can be used as an approximation to rapidity. The variables η

and φ are employed in the reconstruction of jets.

The variable χ, used in the first angular distributions consid-

ered in this study, is derived from the rapidities of the two jets

defining the dijet topology (y1and y2). For a given scattering an-

gle θ∗, the corresponding rapidity in the CM frame (in the massless

particle limit) is y∗=1

be found from the rapidities of the two jets using y∗=1

and yB=1

tonic CM angle θ∗. Additionally, y∗is the basis for the definition

of χ: χ = exp(|y1− y2|) = exp(2|y∗|).

The utility of the χ variable becomes apparent when mak-

ing comparisons of angular distributions predicted for new pro-

cesses to those of QCD. In QCD, gluon (massless, spin-1) exchange

diagrams have approximately the same angular dependence as

Rutherford scattering: dN/dcosθ∗∝ 1/sin4(θ∗/2). Evaluation of

dN/dχ shows that this distribution is constant in χ. By contrast,

the angular distributions characteristic of new processes are more

isotropic, leading to additional dijet events at low χ. In QCD, sub-

dominant diagrams also cause χ distributions to rise slightly at

low χ.

The other important kinematic variable derivable from jet ob-

servables is the dijet invariant mass, mjj, which is also the CM

energy of the partonic system. In reconstruction, mjj is found

from the two jet four-vectors: mjj≡

where E and ? p are the energy and momentum of the jets. Both

distributions used in this Letter are binned in this variable.

The second angular distribution considered is the dijet central-

ity ratio, RC. For this analysis, the detector is divided into two

pseudorapidity regions: central and non-central. RC is defined as

the ratio of the number of events in which the two highest pT jets

both fall into the central region to the number of events in which

the two highest pT jets both fall into the non-central region. For

the current study, the central region is defined as |η1,2| < 0.7, and

the non-central region as 0.7 < |η1,2| < 1.3. Since new processes

are expected to produce more central activity than QCD, their sig-

nal would appear as an increase in RC above some mjjthreshold,

with the increase being directly related to the cross section of the

new signal.

RC distributions are complementary to χ distributions by be-

ing sensitive to different regions of phase space. χ distributions

are fine measures of θ∗and coarse measures of mjj, while the

opposite is true for RC distributions as they can be binned more

finely in mjjfor the given amount of data. This gives RC distribu-

tions greater discrimination in determining mass scales associated

with hypothetical signals. Ideally, when a signal is present, the two

distributions together can be used to narrow the list of viable hy-

potheses and to establish the associated scale parameters.

The measured RC and χ distributions include corrections for

the jet energy scale but are not unfolded to account for resolution

2ln(E+pz

E−pz), where E is the energy and pz, the z-component of

2)), approaches rapidity in the massless limit

2ln(1+|cosθ∗|

1−|cosθ∗|). The variables y∗and yB can

2(y1− y2)

2(y1+ y2). Then y∗may be used to determine the par-

?

(Ej1+ Ej2)2−(? pj1+ ? pj2)2,

effects. They are compared to theoretical predictions processed

through the detector simulation software that, similarly, includes

the jet energy corrections but not resolution unfolding.

3. The ATLAS detector

The ATLAS detector [5] covers almost the whole solid an-

gle around the collision point with layers of tracking detectors,

calorimeters, and muon chambers. Jet measurements depend most

strongly on the calorimeter system. The ATLAS calorimeter is seg-

mented in intervals of pseudorapidity and φ to exploit the prop-

erty that jet shapes are nearly boost invariant in (η,φ) coordinates.

Liquid argon (LAr) technology is used in the electromagnetic

sampling calorimeters, with excellent energy and position reso-

lution, to cover the pseudorapidity range |η| < 3.2. The hadronic

calorimetry in the range |η| < 1.7 is provided by a sampling

calorimeter made of steel and scintillating tiles. In the end-caps

(1.5 < |η| < 3.2), LAr technology is also used for the hadronic

calorimeters, matching the outer |η| limits of the electromag-

netic calorimeters. To complete the η coverage, the LAr forward

calorimeters provide both electromagnetic and hadronic energy

measurements, extending the coverage to |η| = 4.9. In ATLAS,

the calorimeter (η,φ) granularities are 0.1 × 0.1 for the hadronic

calorimeters up to |η| < 2.5 (except for the third layer of the tile

calorimeter, which has a segmentation of 0.2×0.1 up to |η| = 1.7),

and then 0.2 × 0.2 up to |η| < 5.0. The EM calorimeters feature a

much finer readout granularity varying by layer, with cells as small

as 0.025 × 0.025 extending to |η| < 2.5. This segmentation of the

calorimeter is sufficiently fine to assure that angular resolution un-

certainties in dijet analyses are negligible. In the data taking period

considered approximately 187,000 calorimeter cells (98% of the to-

tal) were active for event reconstruction.

ATLAS has a three-level trigger system, with the first level (L1)

being custom built hardware. The two higher level triggers (HLT)

are realized in software. The HLT was not set to reject events ac-

cepted by the L1 single-jet triggers chosen for this analysis.

4. Event selection and reconstruction

In the current 3.1 pb−1data sample, specific L1 jet trigger se-

lections have been exploited for optimal analysis of the angular

observables. For both observables, bins of mjjare associated with

distinct L1 jet trigger requirements selected to provide maximal

statistics while being fully efficient, as will be detailed for χ in

Section 7.

Jets have been reconstructed using the infrared-safe anti-kt jet

clustering algorithm [6] with the radius parameter R = 0.6. The

inputs to this algorithm are clusters of calorimeter cells seeded

by energy depositions significantly above the measured noise. Jet

four-vectors are constructed by the vectorial addition of cell clus-

ters, treating each cluster as an (E, ? p) four-vector with zero mass.

The jet four-vectors are then corrected, as a function of η and pT,

for the effects of hadronic shower response and detector material

distributions by using a calibration scheme based on Monte Carlo

(MC) studies including full detector simulation, and validated with

extensive test-beam studies [7] and collision data [8].

In order to suppress cosmic-ray and beam-related backgrounds,

events are required to contain at least one primary collision vertex

with a position of |z| < 30 cm and reconstructed from at least five

charged-particle tracks. Events with at least two jets are retained if

the highest pT jet (the ‘leading’ jet) satisfies pj1

next-to-leading jet satisfies pj2

olds are required so as to avoid suppression of events where a

third jet has been radiated, while the 30 GeV threshold ensures

T> 60 GeV and the

T> 30 GeV. The asymmetric thresh-

Page 3

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

329

that reconstruction is fully efficient for both leading jets. Those

events containing a poorly measured jet [9] with pT > 15 GeV

are vetoed to avoid cases where such a jet would cause incorrect

identification of the two leading jets. This criterion results in a re-

jection rate of 0.5% in the current data sample. The two leading

jets are required to satisfy quality criteria, such as being associated

with in-time energy deposits in the calorimeter. To be considered

as one of the two leading jets, a jet is required to be found within

the pseudorapidity region |η| < 2.8, where the jet energy scale is

known to highest precision.

5. Monte Carlo simulations

The Monte Carlo simulation used for the analysis presented in

this Letter has the following components. The MC samples have

been produced with the PYTHIA 6.4.21 event generator [10] and

the ATLAS MC09 parameter tune [11], using the modified leading-

order MRST2007 [12] parton distribution functions (PDF). The gen-

erated events are passed through the detailed simulation of the

ATLAS detector [13], which uses GEANT4 [14] for simulation of

particle transport, interactions, and decays. This yields QCD MC

samples that have been smeared by detector effects for compar-

ison with collision data. These simulated events are then subjected

to the same reconstruction process as the data to produce dijet

angular distributions.

As the next step, bin-by-bin correction factors (K-factors) have

been applied to the angular distributions derived from MC events

to account for next-to-leading order (NLO) contributions. The K-

factors are derived from dedicated samples generated separately,

and are defined as the ratio NLOME/PYTSHOW. The NLOME sample

is produced using matrix elements in NLOJET++ [15–17] and the

NLO PDF from CTEQ6.6 [18]. The PYTSHOWsample is produced with

PYTHIA restricted to leading-order (LO) matrix elements and par-

ton showering using the modified leading order MRST2007 PDF.

The angular distributions generated with full PYTHIA already

contain various non-perturbative effects modeled by this event

generator (such as multiple parton interactions and hadronization).

The K-factors defined above are designed to retain these effects

while adjusting for differences in the perturbative sector. Multiply-

ing the full PYTHIA predictions of angular distributions by these

bin-wise K-factors results in a reshaped spectrum which includes

corrections originating from NLO matrix elements.

Over the full range of χ, the K-factors change the normalized

distributions by up to 6%, with little variability from one mass bin

to the other. In the case of RC, the K-factors change the distribu-

tion by less than 1%.

The QCD predictions used for comparison to data in this Letter

are the end product of the two-step procedure described above.

Other ATLAS jet studies [19] have shown that the use of dif-

ferent event generators and different sets of parameters for non-

perturbative effects has a negligible effect on the studied observ-

ables in the phase space being considered. For the high-pT dijet

shape observables studied here, χ and RC, differences between

PDF sets were found to be consistently smaller than the uncer-

tainty associated with the CTEQ6.6 PDF set, and are not taken into

account.

6. Quark contact interaction term

The benchmark beyond-the-Standard-Model process considered

in this Letter is a quark contact interaction, which may be used to

model the onset of kinematic properties that would characterize

quark compositeness: the hypothesis that quarks are composed of

more fundamental particles. The model Lagrangian for this bench-

mark process is a four-fermion contact interaction [20–22], the

analog of the Fermi four-fermion interaction used to describe ef-

fects of the weak interaction. The effects of the contact interaction

would be expected to appear below or near a characteristic en-

ergy scale Λ. If Λ is much larger than the partonic CM energy,

these interactions are suppressed by inverse powers of Λ and the

quarks would appear to be point-like. The dominant effect would

then come from the lowest dimensional four-fermion interactions

(contact terms).

While a number of contact terms are possible, the Lagrangian

in standard use since 1984 [20] is the single (isoscalar) term:

Lqqqq(Λ) =

quark fields ΨL

q

are left-handed. The full Lagrangian used for

hypothesis testing is then the sum of Lqqqq(Λ) and the QCD La-

grangian. The relative phase of these terms is controlled by the

interference parameter, ξ, which is set for destructive interference

(ξ = +1) in the current analysis. Previous analyses [4] showed that

the choice of constructive (ξ = −1) or destructive (ξ = +1) inter-

ference changed exclusion limits by ∼ 1%.

MC samples are calculated in PYTHIA 6.4.21 using this La-

grangian, with each sample corresponding to a distinct value of Λ.

Angular distributions of these samples are processed in the same

fashion as QCD distributions, including the application of bin-wise

K-factors.

Notably, in addition to quark compositeness, this same La-

grangian could be applied to a number of other beyond-the-

Standard-Model theories (albeit with different coupling constants),

so that it serves as a template for models of new processes with

similar scattering distributions.

ξg2

2Λ2

q

¯ ΨL

qγμΨL

q¯ ΨL

qγμΨL

q, where g2/4π = 1 and the

7. Kinematic criteria for angular distributions

The χ distributions described here are normalized to unit area,

(1/Nev)dNev/dχ where Nevis the number of observed events, to

reduce the effects of uncertainties associated with absolute nor-

malization.

Detector resolution effects smear the χ distributions, causing

events to migrate between neighboring bins. This effect is reduced

by configuring the χ bins to match the natural segmentation of

the calorimeter, by making them intervals of constant ?η, ap-

proximating ?y. This is achieved by placing the χ bin boundaries

at positions χn= e(0.3×n), where n is the index for the lower χ

boundary of the nth bin, starting with n = 0. In doing this, not

only is the migration reduced, it is also equalized across the span

of χ.

The χ distributions are divided, in turn, into intervals of dijet

invariant mass, mjj. For massless partons, the following approx-

imate form shows the dependence of mjj on pT and χ: mjj=

√pT1pT2·?χ + 1/χ − 2cos(?φ). Since mjj is the CM energy of

in the high mass bins. Several mjjintervals are analyzed to exploit

the fact that the χ distributions in low mass bins would be similar

to the QCD prediction, while these distributions would be modified

by new physics processes acting in high mjj bins. The sensitivity

to these processes depends strongly on their cross sections relative

to QCD and on the number of events in the highest mass bin.

For χ distributions, events are rejected if |yB| > 0.75 or |y∗| >

1.7. The combined criteria limit the rapidity range of both jets

to |y1,2| < 2.45. The |y∗| criterion determines the maximum χ,

which is 30 for this analysis. Taken together, these two criteria de-

fine a region within the space of accessible y1and y2where the

acceptance is uniform to better than 1% in χ, for all mass bins.

This ensures that the expected shapes of the distributions are not

significantly changed by the acceptance. Also, in low mass bins,

the |yB| criterion emphasizes the contribution from the matrix el-

the partonic system, new processes would be expected to appear

Page 4

330

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

ements and reduces the influence of the effects of PDF convolution.

In the highest mjj bin, used for limit setting, the |yB| criterion

reduces the sample by 16%. These kinematic cuts have been opti-

mized through full MC simulation to assure high acceptance in all

dijet mass bins.

Since event migration also occurs between bins of mjj, studies

of fully simulated jets are used to ensure that migration is small.

This criterion, along with the requirement of a sufficient number of

events, lead to mjjbin boundaries of 340, 520, 800, and 1200 GeV,

with no upper bound on the highest bin. As noted earlier, single-

jet triggers are carefully selected for each bin to be 100% efficient.

Prescaling of triggers leads to a different effective integrated lu-

minosity in each mass bin, with the corresponding numbers being

0.12, 0.56, 2.0, and 3.1 pb−1in the current data sample for the bins

listed above.

Like the χ distributions, the RC distribution has reduced sen-

sitivity to the absolute JES. However, relative differences in jet

response in η could have a significant impact on the sensitivity.

Hence, for these early studies, the η range is restricted to the

more central regions of the calorimeter where the JES is uniform

to within 1% as determined from cross-calibration studies [8]. The

RC region has been chosen to end at a maximum of |η| = 1.3,

just before the transition region between the central and end-cap

calorimeters.

8. Convolution of systematic uncertainties

As mentioned before, the angular distributions have a reduced

sensitivity to the JES uncertainties compared to other dijet mea-

surements. Nevertheless, the JES still represents the dominant un-

certainty for this analysis. The ATLAS JES has been determined by

extensive studies [23], and its uncertainty has been tabulated in

the variables η, pT, and NV, the number of vertices in the event.

The average NV over the full current data sample is 1.7. Typi-

cal values of the JES uncertainty in the considered phase space

are between 5% and 7%. The resulting bin-wise uncertainties are

up to 9% for the χ observable, and up to 7% for the RC observ-

able.

The dominant sources of theoretical uncertainty are NLO QCD

renormalization and factorization scales, and the PDF uncertainties.

The corresponding bin-wise uncertainties for normalized χ distri-

butions are typically up to 3% for the combined NLO QCD scales

and 1% for the PDF error.

Convolution of these experimental and theoretical uncertainties

is done for all angular distributions through Monte Carlo pseudo-

experiments (PE’s). For all events in the MC sample 1000 PE’s

are performed, three random numbers being drawn from a Gaus-

sian distribution for each PE. The first is applied to the absolute

JES, obtained from the tabulation described above and assumed

to be fully correlated across η. The second number is applied to

the relative JES, extracted from the same tabulation, which de-

pends only on η and restores the decorrelation due to η depen-

dence of the energy scale. The third number is applied to the

PDF uncertainty, provided by the CTEQ6.6 PDF error sets. In a

fourth and final step, the uncertainty due to the NLO QCD renor-

malization (μR) and factorization (μF) scales is found by letting

μR and μF vary independently between 0.5, 1 and 2 times the

average transverse momentum of the two leading jets, resulting

in nine samples drawn from a uniform distribution. In a given

PE, the data dijet selection criteria described previously are ap-

plied.

Other sources of uncertainty have been studied in separate sim-

ulations, and have not been included in the PE’s described above.

As determined by in situ studies comparing data to detector sim-

ulation [24], the jet energy resolution (JER) in ATLAS evolves from

Fig. 1. The normalized χ distributions for 340 < mjj< 520 GeV, 520 < mjj<

800 GeV, 800 < mjj< 1200 GeV, and mjj> 1200 GeV, with plotting offsets shown

in parentheses. Shown are the QCD predictions with systematic uncertainties

(bands), and data points with statistical uncertainties. The prediction for QCD with

an added quark contact term with Λ = 3.0 TeV is shown for the highest mass bin

mjj> 1200 GeV.

Fig. 2. Dijet centrality ratio, RC, as a function of mjj, with all events above a mass

of 1400 GeV plotted in the last bin. Shown are the QCD prediction with systematic

uncertainties (bands), and data points with statistical uncertainties. The prediction

for QCD with an added quark contact term with Λ = 2.0 TeV is also shown.

12% to 7% over the pT range from 60 GeV to 1 TeV. To estimate

the effect of JER smearing, the χ and RC distributions were gen-

erated with and without JER variation of this magnitude, and the

differences were found to be negligible. Detector angular resolution

effects in φ and η were studied in a similar fashion, with smear-

ing functions specific to the ATLAS calorimeter segmentation, and

also found to be negligible.

Page 5

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

331

9. Comparison of data to theory

In Fig. 1 the measured dijet χ distributions are compared to

the QCD predictions, along with 1σ systematic error bands deter-

mined from the PE’s, and statistical errors on the data. Fig. 2 shows

the measured dijet-centrality distribution and QCD prediction. The

statistical uncertainties are obtained using Poisson probabilities. In

the highest mass bins, the numerator and denominator of the ratio

typically contain 1 or 2 events each.

To evaluate the agreement between data and QCD in Figs. 1

and 2 a statistical significance test was performed using p-values.

The p-value is the probability to obtain a fit to data further from

the theoretical prediction than the observed fit, under the assump-

tion that the QCD prediction is the correct description of physics.

A chi-square goodness-of-fit is used as the test statistic, and the

p-values are derived from the ensemble of PE’s generated as de-

scribed above, including bin-to-bin correlations due to systematic

effects, but with additional statistical fluctuations. For the χ distri-

butions shown in Fig. 1, the resulting p-value for each dijet mass

bin is (from lowest to highest) 0.19, 0.11, 0.27 and 0.54, indicating

good agreement with the QCD prediction. Similarly, in Fig. 2, the

dijet RC comparison has a p-value equal to 0.85, also indicating

good agreement with the QCD prediction.

The best fit of the RC distribution in Fig. 2 is obtained for a

compositeness scale of 2.9 TeV. This is not statistically significant,

as the QCD prediction lies within the shortest 68% confidence in-

terval in 1/Λ4.

10. Determination of exclusion limits

Since no signal from new physics processes is apparent in these

distributions, limits have been obtained on the compositeness scale

Λ of quark contact interactions, based on analyses of the χ distri-

butions. The contact term hypothesis is tested in the highest dijet

mass bin in Fig. 1, which begins at mjj= 1200 GeV. For the χ dis-

tribution in this mass bin, the parameter Fχ is defined as the ratio

of the number of events in the first four χ bins to the number in

all χ bins. The upper boundary of the fourth bin is at χ = 3.32.

This choice of the bin boundary has been determined through a

MC study that varies the number of bins in the numerator, as well

as the dijet mass bin, and determines the setting that maximizes

the sensitivity to quark contact interactions, given the current in-

tegrated luminosity.

A frequentist analysis is employed as follows. Predictions of Fχ

are obtained for a range of Λ by interpolation between distinct

samples generated with different 1/Λ2values. The QCD sample

provides a bound with Λ = ∞, and additional samples are gen-

erated with Λ values of 500, 750, 1000, 1500, and 3000 GeV. A

full set of PE’s is made for each hypothesis to construct one-sided

95% CL intervals for Fχ, and the Neyman construction [25] is then

applied to obtain a limit on Λ.

The result is shown in Fig. 3. The measured value of Fχ is

shown by the dashed horizontal line. The value of Fχ expected

from QCD is the solid horizontal line, and the band around it al-

lows one to obtain the 1σ variation of the expected limit. The

dotted line is the 95% CL contour of the Fχ prediction for quark

contact interactions plus QCD, as a function of Λ and including all

systematic uncertainties. This contour decreases as a function of Λ

since, for a small Λ scale, there would be more events at low χ.

The observed limit on Λ is 3.4 TeV. This limit is found from

the point where the Fχ 95% CL contour crosses the measured Fχ

value. All values of Λ less than this value are excluded with 95%

confidence. This corresponds to a distance scale of ∼ 6 · 10−5fm,

from conversion of the limit using ¯ hc. The expected limit, found

from the crossing at the QCD prediction, is 3.5 TeV.

Fig. 3. The dashed horizontal line is the measured Fχ (see text) and the solid hor-

izontal line is the QCD prediction, with a band to illustrate a 1σ variation of the

expected limit. The dotted curve is the 95% CL exclusion contour for Fχ with quark

contact interactions, used to set the exclusion limit on Λ.

The impact of systematic uncertainties is as follows. If all sys-

tematic uncertainties were excluded, the observed limit reported

above would increase by 6% to 3.6 TeV, mainly due to the JES

uncertainty. Inclusion of NLO scales and PDF uncertainties does

not change the limit measurably, as shape differences arising from

these are well below the statistical uncertainties.

Confirming analyses have been done using a Bayesian approach

with Poisson likelihoods for all χ bins, calculated using priors flat

in 1/Λ2or 1/Λ4. These have resulted in observed exclusion limits

on Λ of 3.3 TeV and 3.2 TeV, respectively, very close to the limit

found in the frequentist analysis.

Similarly, an analysis has been performed to establish 95% CL

limits using the dijet centrality ratio shown in Fig. 2. The likeli-

hood for RC is constructed as a product of likelihoods of inner and

outer event counts for all mass bins, which is then analyzed with a

Bayesian approach similar to that of the χ Bayesian analysis. Using

priors flat in 1/Λ2(1/Λ4) the observed exclusion limit is 2.0 TeV

(also 2.0 TeV), with an expected limit of 2.6 TeV (2.4 TeV), pro-

viding an additional benchmark for comparison with other exper-

iments. A weaker limit than the one derived from the χ analysis

is expected due to the lower η acceptance associated with the RC

observable.

11. Conclusion

Dijet angular distributions have been measured by the ATLAS

experiment over a large angular range and spanning dijet masses

up to 2.8 TeV. These distributions are in good agreement with QCD

predictions. Using 3.1 pb−1of data, quark contact interactions with

a scale Λ below 3.4 TeV are excluded at the 95% CL. The sensitiv-

ity of this analysis extends significantly beyond that of previously

published studies.

Acknowledgements

We are profoundly grateful to everyone at CERN involved in

operating the LHC in such a superb way during this initial high-

Page 6

332

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

energy data-taking period. We acknowledge equally warmly all

the technical and administrative staff in the collaborating in-

stitutions without whom ATLAS could not be operated so effi-

ciently.

We acknowledge the support of ANPCyT, Argentina; Yerevan

Physics Institute, Armenia; ARC and DEST, Australia; Bundesminis-

terium für Wissenschaft und Forschung, Austria; National Academy

of Sciences of Azerbaijan; State Committee on Science & Technolo-

gies of the Republic of Belarus; CNPq and FINEP, Brazil; NSERC,

NRC, and CFI, Canada; CERN; CONICYT, Chile; NSFC, China; COL-

CIENCIAS, Colombia; Ministry of Education, Youth and Sports of the

Czech Republic, Ministry of Industry and Trade of the Czech Repub-

lic, and Committee for Collaboration of the Czech Republic with

CERN; DNRF, DNSRC and the Lundbeck Foundation, Denmark; Eu-

ropean Commission, through the ARTEMIS Research Training Net-

work; IN2P3-CNRS and CEA-DSM/IRFU, France; Georgian Academy

of Sciences; BMBF, DFG, HGF and MPG, Germany; Ministry of Ed-

ucation and Religion, through the EPEAEK program PYTHAGORAS

II and GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center,

Israel; INFN, Italy; MEXT, Japan; CNRST, Morocco; FOM and NWO,

Netherlands; The Research Council of Norway; Ministry of Science

and Higher Education, Poland; GRICES and FCT, Portugal; Ministry

of Education and Research, Romania; Ministry of Education and

Science of the Russian Federation and State Atomic Energy Corpo-

ration ROSATOM; JINR; Ministry of Science, Serbia; Department of

International Science and Technology Cooperation, Ministry of Edu-

cation of the Slovak Republic; Slovenian Research Agency, Ministry

of Higher Education, Science and Technology, Slovenia; Ministerio

de Educación y Ciencia, Spain; The Swedish Research Council, The

Knut and Alice Wallenberg Foundation, Sweden; State Secretariat

for Education and Science, Swiss National Science Foundation, and

Cantons of Bern and Geneva, Switzerland; National Science Coun-

cil, Taiwan; TAEK, Turkey; The STFC, the Royal Society and The

Leverhulme Trust, United Kingdom; DOE and NSF, United States

of America.

Open Access

This article is published Open Access at sciencedirect.com. It

is distributed under the terms of the Creative Commons Attribu-

tion License 3.0, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original authors and

source are credited.

References

[1] UA1 Collaboration, Physics Letters B 136 (1984) 294.

[2] UA2 Collaboration, Physics Letters B 144 (1984) 283.

[3] CDF Collaboration, Phys. Rev. Lett. 77 (1996) 5336.

[4] D0 Collaboration, Phys. Rev. Lett. 103 (2009) 191803.

[5] ATLAS Collaboration, JINST 3 (2008) S08003.

[6] M. Cacciari, G. Salam, G. Soyez, JHEP 0804 (2008) 063.

[7] P. Adragna, et al., Nucl. Instrum. Meth. A 615 (2010) 158.

[8] ATLAS Collaboration, ATLAS-CONF-2010-052, 2010.

[9] ATLAS Collaboration, ATLAS-CONF-2010-038, 2010.

[10] T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 0605 (2006) 026, arXiv:hep-ph/

0603175.

[11] ATLAS Collaboration, ATL-PHYS-PUB-2010-002, 2010.

[12] A. Sherstnev, R.S. Thorne, Eur. Phys. J. C 55 (2008) 553, arXiv:0711.2473 [hep-

ph].

[13] ATLAS Collaboration, arXiv:1005.4568v1 [physics.ins-det] (Eur. Phys. J. C, 2010,

in press).

[14] S. Agostinelli, et al., GEANT4, Nucl. Instrum. Meth. A 506 (2003) 250.

[15] Z. Nagy, Phys. Rev. Lett. 88 (2002) 122003.

[16] Z. Nagy, Phys. Rev. D 68 (2003) 094002.

[17] S. Catani, M.H. Seymour, Nucl. Phys. B 485 (1997) 291.

[18] P.M. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004, arXiv:0802.0007 [hep-ph].

[19] ATLAS Collaboration, CERN-PH-EP-2010-034 arXiv:1009.5908v2 [hep-ex] (Eur.

Phys. J. C, 2010, submitted for publication).

[20] E. Eichten, I. Hinchliffe, K.D. Lane, C. Quigg, Rev. Mod. Phys. 56 (1984) 579.

[21] E. Eichten, I. Hinchliffe, K.D. Lane, C. Quigg, Rev. Mod. Phys. 58 (1986) 1065.

[22] P. Chiappetta, M. Perrottet, Phys. Lett. B 235 (1991) 489.

[23] ATLAS Collaboration, ATLAS-CONF-2010-056, 2010.

[24] ATLAS Collaboration, ATLAS-CONF-2010-054, 2010.

[25] J. Neyman, Philosophical Transactions of the Royal Society of London A 236

(1937) 333.

ATLAS Collaboration

G. Aad48, B. Abbott111, J. Abdallah11, A.A. Abdelalim49, A. Abdesselam118, O. Abdinov10, B. Abi112,

M. Abolins88, H. Abramowicz153, H. Abreu115, E. Acerbi89a,89b, B.S. Acharya164a,164b, M. Ackers20,

D.L. Adams24, T.N. Addy56, J. Adelman175, M. Aderholz99, S. Adomeit98, C. Adorisio36a,36b, P. Adragna75,

T. Adye129, S. Aefsky22, J.A. Aguilar-Saavedra124b,a, M. Aharrouche81, S.P. Ahlen21, F. Ahles48,

A. Ahmad148, H. Ahmed2, M. Ahsan40, G. Aielli133a,133b, T. Akdogan18a, T.P.A. Åkesson79, G. Akimoto155,

A.V. Akimov94, A. Aktas48, M.S. Alam1, M.A. Alam76, S. Albrand55, M. Aleksa29, I.N. Aleksandrov65,

M. Aleppo89a,89b, F. Alessandria89a, C. Alexa25a, G. Alexander153, G. Alexandre49, T. Alexopoulos9,

M. Alhroob20, M. Aliev15, G. Alimonti89a, J. Alison120, M. Aliyev10, P.P. Allport73, S.E. Allwood-Spiers53,

J. Almond82, A. Aloisio102a,102b, R. Alon171, A. Alonso79, J. Alonso14, M.G. Alviggi102a,102b, K. Amako66,

P. Amaral29, G. Ambrosio89a,b, C. Amelung22, V.V. Ammosov128, A. Amorim124a,c, G. Amorós167a,167b,

N. Amram153, C. Anastopoulos139, T. Andeen34, C.F. Anders20, K.J. Anderson30, A. Andreazza89a,89b,

V. Andrei58a, M.-L. Andrieux55, X.S. Anduaga70, A. Angerami34, F. Anghinolfi29, N. Anjos124a,

A. Annovi47, A. Antonaki8, M. Antonelli47, S. Antonelli19a,19b, J. Antos144b, B. Antunovic41, F. Anulli132a,

S. Aoun83, R. Apolle118, G. Arabidze88, I. Aracena143, Y. Arai66, A.T.H. Arce44, J.P. Archambault28,

S. Arfaoui29,d, J.-F. Arguin14, T. Argyropoulos9, E. Arik18a,ax, M. Arik18a, A.J. Armbruster87, K.E. Arms109,

S.R. Armstrong24, O. Arnaez4, C. Arnault115, A. Artamonov95, D. Arutinov20, M. Asai143, S. Asai155,

R. Asfandiyarov172, S. Ask27, B. Åsman146a,146b, D. Asner28, L. Asquith5, K. Assamagan24, A. Astbury169,

A. Astvatsatourov52, G. Atoian175, B. Aubert4, B. Auerbach175, E. Auge115, K. Augsten127,

M. Aurousseau4, N. Austin73, G. Avolio163, R. Avramidou9, D. Axen168, C. Ay54, G. Azuelos93,e,

Page 7

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

333

Y. Azuma155, M.A. Baak29, G. Baccaglioni89a, C. Bacci134a,134b, A.M. Bach14, H. Bachacou136,

K. Bachas29, G. Bachy29, M. Backes49, E. Badescu25a, P. Bagnaia132a,132b, Y. Bai32a, D.C. Bailey158,

T. Bain158, J.T. Baines129, O.K. Baker175, M.D. Baker24, S. Baker77, F. Baltasar Dos Santos Pedrosa29,

E. Banas38, P. Banerjee93, Sw. Banerjee169, D. Banfi89a,89b, A. Bangert137, V. Bansal169, S.P. Baranov94,

S. Baranov65, A. Barashkou65, A. Barbaro Galtieri14, T. Barber27, E.L. Barberio86, D. Barberis50a,50b,

M. Barbero20, D.Y. Bardin65, T. Barillari99, M. Barisonzi174, T. Barklow143, N. Barlow27, B.M. Barnett129,

R.M. Barnett14, A. Baroncelli134a, M. Barone47, A.J. Barr118, F. Barreiro80,

J. Barreiro Guimarães da Costa57, P. Barrillon115, R. Bartoldus143, D. Bartsch20, R.L. Bates53,

L. Batkova144a, J.R. Batley27, A. Battaglia16, M. Battistin29, G. Battistoni89a, F. Bauer136, H.S. Bawa143,

M. Bazalova125, B. Beare158, T. Beau78, P.H. Beauchemin118, R. Beccherle50a, P. Bechtle41, G.A. Beck75,

H.P. Beck16, M. Beckingham48, K.H. Becks174, A.J. Beddall18c, A. Beddall18c, V.A. Bednyakov65, C. Bee83,

M. Begel24, S. Behar Harpaz152, P.K. Behera63, M. Beimforde99, C. Belanger-Champagne166,

B. Belhorma55, P.J. Bell49, W.H. Bell49, G. Bella153, L. Bellagamba19a, F. Bellina29, G. Bellomo89a,89b,

M. Bellomo119a, A. Belloni57, K. Belotskiy96, O. Beltramello29, S. Ben Ami152, O. Benary153,

D. Benchekroun135a, C. Benchouk83, M. Bendel81, B.H. Benedict163, N. Benekos165, Y. Benhammou153,

G.P. Benincasa124a, D.P. Benjamin44, M. Benoit115, J.R. Bensinger22, K. Benslama130, S. Bentvelsen105,

M. Beretta47, D. Berge29, E. Bergeaas Kuutmann41, N. Berger4, F. Berghaus169, E. Berglund49,

J. Beringer14, K. Bernardet83, P. Bernat115, R. Bernhard48, C. Bernius77, T. Berry76, A. Bertin19a,19b,

F. Bertinelli29, F. Bertolucci122a,122b, S. Bertolucci47, M.I. Besana89a,89b, N. Besson136, S. Bethke99,

W. Bhimji45, R.M. Bianchi48, M. Bianco72a,72b, O. Biebel98, J. Biesiada14, M. Biglietti132a,132b,

H. Bilokon47, M. Binder98, M. Bindi19a,19b, S. Binet115, A. Bingul18c, C. Bini132a,132b, C. Biscarat180,

R. Bischof62, U. Bitenc48, K.M. Black57, R.E. Blair5, J.-B. Blanchard115, G. Blanchot29, C. Blocker22,

J. Blocki38, A. Blondel49, W. Blum81, U. Blumenschein54, C. Boaretto132a,132b, G.J. Bobbink105,

A. Bocci44, D. Bocian38, R. Bock29, C.R. Boddy118, M. Boehler41, J. Boek174, N. Boelaert79, S. Böser77,

J.A. Bogaerts29, A. Bogouch90,ax, C. Bohm146a, J. Bohm125, V. Boisvert76, T. Bold163,f, V. Boldea25a,

V.G. Bondarenko96, M. Bondioli163, M. Boonekamp136, G. Boorman76, C.N. Booth139, P. Booth139,

J.R.A. Booth17, S. Bordoni78, C. Borer16, A. Borisov128, G. Borissov71, I. Borjanovic12a, S. Borroni132a,132b,

K. Bos105, D. Boscherini19a, M. Bosman11, H. Boterenbrood105, D. Botterill129, J. Bouchami93,

J. Boudreau123, E.V. Bouhova-Thacker71, C. Boulahouache123, C. Bourdarios115, A. Boveia30, J. Boyd29,

I.R. Boyko65, N.I. Bozhko128, I. Bozovic-Jelisavcic12b, S. Braccini47, J. Bracinik17, A. Braem29,

E. Brambilla72a,72b, P. Branchini134a, G.W. Brandenburg57, A. Brandt7, G. Brandt41, O. Brandt54,

U. Bratzler156, B. Brau84, J.E. Brau114, H.M. Braun174, B. Brelier158, J. Bremer29, R. Brenner166,

S. Bressler152, D. Breton115, N.D. Brett118, P.G. Bright-Thomas17, D. Britton53, F.M. Brochu27, I. Brock20,

R. Brock88, T.J. Brodbeck71, E. Brodet153, F. Broggi89a, C. Bromberg88, G. Brooijmans34, W.K. Brooks31b,

G. Brown82, E. Brubaker30, P.A. Bruckman de Renstrom38, D. Bruncko144b, R. Bruneliere48, S. Brunet61,

A. Bruni19a, G. Bruni19a, M. Bruschi19a, T. Buanes13, F. Bucci49, J. Buchanan118, N.J. Buchanan2,

P. Buchholz141, R.M. Buckingham118, A.G. Buckley45, I.A. Budagov65, B. Budick108, V. Büscher81,

L. Bugge117, D. Buira-Clark118, E.J. Buis105, O. Bulekov96, M. Bunse42, T. Buran117, H. Burckhart29,

S. Burdin73, T. Burgess13, S. Burke129, E. Busato33, P. Bussey53, C.P. Buszello166, F. Butin29, B. Butler143,

J.M. Butler21, C.M. Buttar53, J.M. Butterworth77, T. Byatt77, J. Caballero24, S. Cabrera Urbán167a,167b,

M. Caccia89a,89b,g, D. Caforio19a,19b, O. Cakir3a, P. Calafiura14, G. Calderini78, P. Calfayan98,

R. Calkins106, L.P. Caloba23a, R. Caloi132a,132b, D. Calvet33, S. Calvet81, A. Camard78, P. Camarri133a,133b,

M. Cambiaghi119a,119b, D. Cameron117, J. Cammin20, S. Campana29, M. Campanelli77, V. Canale102a,102b,

F. Canelli30, A. Canepa159a, J. Cantero80, L. Capasso102a,102b, M.D.M. Capeans Garrido29, I. Caprini25a,

M. Caprini25a, M. Caprio102a,102b, D. Capriotti99, M. Capua36a,36b, R. Caputo148, C. Caramarcu25a,

R. Cardarelli133a, T. Carli29, G. Carlino102a, L. Carminati89a,89b, B. Caron2,h, S. Caron48, C. Carpentieri48,

G.D. Carrillo Montoya172, S. Carron Montero158, A.A. Carter75, J.R. Carter27, J. Carvalho124a,i,

D. Casadei108, M.P. Casado11, M. Cascella122a,122b, C. Caso50a,50b,ax, A.M. Castaneda Hernandez172,

E. Castaneda-Miranda172, V. Castillo Gimenez167a,167b, N.F. Castro124b,a, G. Cataldi72a, F. Cataneo29,

A. Catinaccio29, J.R. Catmore71, A. Cattai29, G. Cattani133a,133b, S. Caughron34, D. Cauz164a,164c,

A. Cavallari132a,132b, P. Cavalleri78, D. Cavalli89a, M. Cavalli-Sforza11, V. Cavasinni122a,122b,

A. Cazzato72a,72b, F. Ceradini134a,134b, C. Cerna83, A.S. Cerqueira23a, A. Cerri29, L. Cerrito75, F. Cerutti47,

Page 8

334

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

M. Cervetto50a,50b, S.A. Cetin18b, F. Cevenini102a,102b, A. Chafaq135a, D. Chakraborty106, K. Chan2,

J.D. Chapman27, J.W. Chapman87, E. Chareyre78, D.G. Charlton17, V. Chavda82, S. Cheatham71,

S. Chekanov5, S.V. Chekulaev159a, G.A. Chelkov65, H. Chen24, L. Chen2, S. Chen32c, T. Chen32c,

X. Chen172, S. Cheng32a, A. Cheplakov65, V.F. Chepurnov65, R. Cherkaoui El Moursli135d,

V. Tcherniatine24, D. Chesneanu25a, E. Cheu6, S.L. Cheung158, L. Chevalier136, F. Chevallier136,

V. Chiarella47, G. Chiefari102a,102b, L. Chikovani51a,51b, J.T. Childers58a, A. Chilingarov71, G. Chiodini72a,

M.V. Chizhov65, G. Choudalakis30, S. Chouridou137, I.A. Christidi77, A. Christov48,

D. Chromek-Burckhart29, M.L. Chu151, J. Chudoba125, G. Ciapetti132a,132b, A.K. Ciftci3a, R. Ciftci3a,

D. Cinca33, V. Cindro74, M.D. Ciobotaru163, C. Ciocca19a,19b, A. Ciocio14, M. Cirilli87,j, M. Citterio89a,

A. Clark49, P.J. Clark45, W. Cleland123, J.C. Clemens83, B. Clement55, C. Clement146a,146b, R.W. Clifft129,

Y. Coadou83, M. Cobal164a,164c, A. Coccaro50a,50b, J. Cochran64, P. Coe118, S. Coelli89a, J. Coggeshall165,

E. Cogneras180, C.D. Cojocaru28, J. Colas4, B. Cole34, A.P. Colijn105, C. Collard115, N.J. Collins17,

C. Collins-Tooth53, J. Collot55, G. Colon84, R. Coluccia72a,72b, G. Comune88, P. Conde Muiño124a,

E. Coniavitis118, M.C. Conidi11, M. Consonni104, S. Constantinescu25a, C. Conta119a,119b,

F. Conventi102a,k, J. Cook29, M. Cooke34, B.D. Cooper75, A.M. Cooper-Sarkar118, N.J. Cooper-Smith76,

K. Copic34, T. Cornelissen50a,50b, M. Corradi19a, S. Correard83, F. Corriveau85,l, A. Corso-Radu163,

A. Cortes-Gonzalez165, G. Cortiana99, G. Costa89a, M.J. Costa167a,167b, D. Costanzo139, T. Costin30,

D. Côté29, R. Coura Torres23a, L. Courneyea169, G. Cowan76, C. Cowden27, B.E. Cox82, K. Cranmer108,

J. Cranshaw5, M. Cristinziani20, G. Crosetti36a,36b, R. Crupi72a,72b, S. Crépé-Renaudin55,

C. Cuenca Almenar175, T. Cuhadar Donszelmann139, S. Cuneo50a,50b, M. Curatolo47, C.J. Curtis17,

P. Cwetanski61, H. Czirr141, Z. Czyczula175, S. D’Auria53, M. D’Onofrio73, A. D’Orazio99,

A. Da Rocha Gesualdi Mello23a, P.V.M. Da Silva23a, C. Da Via82, W. Dabrowski37, A. Dahlhoff48, T. Dai87,

C. Dallapiccola84, S.J. Dallison129,ax, C.H. Daly138, M. Dam35, M. Dameri50a,50b, D.S. Damiani137,

H.O. Danielsson29, R. Dankers105, D. Dannheim99, V. Dao49, G. Darbo50a, G.L. Darlea25b, C. Daum105,

J.P. Dauvergne29, W. Davey86, T. Davidek126, N. Davidson86, R. Davidson71, M. Davies93, A.R. Davison77,

E. Dawe142, I. Dawson139, J.W. Dawson5, R.K. Daya39, K. De7, R. de Asmundis102a, S. De Castro19a,19b,

P.E. De Castro Faria Salgado24, S. De Cecco78, J. de Graat98, N. De Groot104, P. de Jong105,

E. De La Cruz-Burelo87, C. De La Taille115, B. De Lotto164a,164c, L. De Mora71, L. De Nooij105,

M. De Oliveira Branco29, D. De Pedis132a, P. de Saintignon55, A. De Salvo132a, U. De Sanctis164a,164c,

A. De Santo149, J.B. De Vivie De Regie115, G. De Zorzi132a,132b, S. Dean77, G. Dedes99, D.V. Dedovich65,

P.O. Defay33, J. Degenhardt120, M. Dehchar118, M. Deile98, C. Del Papa164a,164c, J. Del Peso80,

T. Del Prete122a,122b, A. Dell’Acqua29, L. Dell’Asta89a,89b, M. Della Pietra102a,m, D. della Volpe102a,102b,

M. Delmastro29, P. Delpierre83, N. Delruelle29, P.A. Delsart55, C. Deluca148, S. Demers175,

M. Demichev65, B. Demirkoz11, J. Deng163, W. Deng24, S.P. Denisov128, C. Dennis118, J.E. Derkaoui135c,

F. Derue78, P. Dervan73, K. Desch20, P.O. Deviveiros158, A. Dewhurst129, B. DeWilde148, S. Dhaliwal158,

R. Dhullipudi24,n, A. Di Ciaccio133a,133b, L. Di Ciaccio4, A. Di Domenico132a,132b, A. Di Girolamo29,

B. Di Girolamo29, S. Di Luise134a,134b, A. Di Mattia88, R. Di Nardo133a,133b, A. Di Simone133a,133b,

R. Di Sipio19a,19b, M.A. Diaz31a, M.M. Diaz Gomez49, F. Diblen18c, E.B. Diehl87, H. Dietl99, J. Dietrich48,

T.A. Dietzsch58a, S. Diglio115, K. Dindar Yagci39, J. Dingfelder20, C. Dionisi132a,132b, P. Dita25a, S. Dita25a,

F. Dittus29, F. Djama83, R. Djilkibaev108, T. Djobava51a,51b, M.A.B. do Vale23a, A. Do Valle Wemans124a,

T.K.O. Doan4, M. Dobbs85, R. Dobinson29,ax, D. Dobos29, E. Dobson29, M. Dobson163, J. Dodd34,

O.B. Dogan18a,ax, C. Doglioni118, T. Doherty53, Y. Doi66, J. Dolejsi126, I. Dolenc74, Z. Dolezal126,

B.A. Dolgoshein96, T. Dohmae155, M. Donadelli23b, M. Donega120, J. Donini55, J. Dopke174, A. Doria102a,

A. Dos Anjos172, M. Dosil11, A. Dotti122a,122b, M.T. Dova70, J.D. Dowell17, A. Doxiadis105, A.T. Doyle53,

Z. Drasal126, J. Drees174, N. Dressnandt120, H. Drevermann29, C. Driouichi35, M. Dris9, J.G. Drohan77,

J. Dubbert99, T. Dubbs137, S. Dube14, E. Duchovni171, G. Duckeck98, A. Dudarev29, F. Dudziak115,

M. Dührssen29, I.P. Duerdoth82, L. Duflot115, M.-A. Dufour85, M. Dunford29, H. Duran Yildiz3b,

A. Dushkin22, R. Duxfield139, M. Dwuznik37, F. Dydak29, D. Dzahini55, M. Düren52, W.L. Ebenstein44,

J. Ebke98, S. Eckert48, S. Eckweiler81, K. Edmonds81, C.A. Edwards76, I. Efthymiopoulos49, K. Egorov61,

W. Ehrenfeld41, T. Ehrich99, T. Eifert29, G. Eigen13, K. Einsweiler14, E. Eisenhandler75, T. Ekelof166,

M. El Kacimi4, M. Ellert166, S. Elles4, F. Ellinghaus81, K. Ellis75, N. Ellis29, J. Elmsheuser98, M. Elsing29,

R. Ely14, D. Emeliyanov129, R. Engelmann148, A. Engl98, B. Epp62, A. Eppig87, J. Erdmann54,

Page 9

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

335

A. Ereditato16, D. Eriksson146a, I. Ermoline88, J. Ernst1, M. Ernst24, J. Ernwein136, D. Errede165,

S. Errede165, E. Ertel81, M. Escalier115, C. Escobar167a,167b, X. Espinal Curull11, B. Esposito47,

F. Etienne83, A.I. Etienvre136, E. Etzion153, D. Evangelakou54, H. Evans61, V.N. Evdokimov128,

L. Fabbri19a,19b, C. Fabre29, K. Facius35, R.M. Fakhrutdinov128, S. Falciano132a, A.C. Falou115, Y. Fang172,

M. Fanti89a,89b, A. Farbin7, A. Farilla134a, J. Farley148, T. Farooque158, S.M. Farrington118, P. Farthouat29,

D. Fasching172, P. Fassnacht29, D. Fassouliotis8, B. Fatholahzadeh158, L. Fayard115, S. Fazio36a,36b,

R. Febbraro33, P. Federic144a, O.L. Fedin121, I. Fedorko29, W. Fedorko29, M. Fehling-Kaschek48,

L. Feligioni83, C.U. Felzmann86, C. Feng32d, E.J. Feng30, A.B. Fenyuk128, J. Ferencei144b, D. Ferguson172,

J. Ferland93, B. Fernandes124a,o, W. Fernando109, S. Ferrag53, J. Ferrando118, V. Ferrara41, A. Ferrari166,

P. Ferrari105, R. Ferrari119a, A. Ferrer167a,167b, M.L. Ferrer47, D. Ferrere49, C. Ferretti87,

A. Ferretto Parodi50a,50b, F. Ferro50a,50b, M. Fiascaris118, F. Fiedler81, A. Filipˇ ciˇ c74, A. Filippas9,

F. Filthaut104, M. Fincke-Keeler169, M.C.N. Fiolhais124a,i, L. Fiorini11, A. Firan39, G. Fischer41,

P. Fischer20, M.J. Fisher109, S.M. Fisher129, J. Flammer29, M. Flechl48, I. Fleck141, J. Fleckner81,

P. Fleischmann173, S. Fleischmann20, T. Flick174, L.R. Flores Castillo172, M.J. Flowerdew99, F. Föhlisch58a,

M. Fokitis9, T. Fonseca Martin16, J. Fopma118, D.A. Forbush138, A. Formica136, A. Forti82, D. Fortin159a,

J.M. Foster82, D. Fournier115, A. Foussat29, A.J. Fowler44, K. Fowler137, H. Fox71, P. Francavilla122a,122b,

S. Franchino119a,119b, D. Francis29, M. Franklin57, S. Franz29, M. Fraternali119a,119b, S. Fratina120,

J. Freestone82, S.T. French27, R. Froeschl29, D. Froidevaux29, J.A. Frost27, C. Fukunaga156,

E. Fullana Torregrosa29, J. Fuster167a,167b, C. Gabaldon29, O. Gabizon171, T. Gadfort24, S. Gadomski49,

G. Gagliardi50a,50b, P. Gagnon61, C. Galea98, E.J. Gallas118, M.V. Gallas29, V. Gallo16, B.J. Gallop129,

P. Gallus125, E. Galyaev40, K.K. Gan109, Y.S. Gao143,p, V.A. Gapienko128, A. Gaponenko14,

M. Garcia-Sciveres14, C. García167a,167b, J.E. García Navarro49, R.W. Gardner30, N. Garelli29,

H. Garitaonandia105, V. Garonne29, J. Garvey17, C. Gatti47, G. Gaudio119a, O. Gaumer49, B. Gaur141,

V. Gautard136, P. Gauzzi132a,132b, I.L. Gavrilenko94, C. Gay168, G. Gaycken20, J.-C. Gayde29, E.N. Gazis9,

P. Ge32d, C.N.P. Gee129, Ch. Geich-Gimbel20, K. Gellerstedt146a,146b, C. Gemme50a, M.H. Genest98,

S. Gentile132a,132b, F. Georgatos9, S. George76, P. Gerlach174, A. Gershon153, C. Geweniger58a,

H. Ghazlane135d, P. Ghez4, N. Ghodbane33, B. Giacobbe19a, S. Giagu132a,132b, V. Giakoumopoulou8,

V. Giangiobbe122a,122b, F. Gianotti29, B. Gibbard24, A. Gibson158, S.M. Gibson118, G.F. Gieraltowski5,

L.M. Gilbert118, M. Gilchriese14, O. Gildemeister29, V. Gilewsky91, D. Gillberg28, A.R. Gillman129,

D.M. Gingrich2,q, J. Ginzburg153, N. Giokaris8, M.P. Giordani164a,164c, R. Giordano102a,102b, F.M. Giorgi15,

P. Giovannini99, P.F. Giraud136, P. Girtler62, D. Giugni89a, P. Giusti19a, B.K. Gjelsten117, L.K. Gladilin97,

C. Glasman80, J. Glatzer48, A. Glazov41, K.W. Glitza174, G.L. Glonti65, K.G. Gnanvo75, J. Godfrey142,

J. Godlewski29, M. Goebel41, T. Göpfert43, C. Goeringer81, C. Gössling42, T. Göttfert99,

V. Goggi119a,119b,r, S. Goldfarb87, D. Goldin39, T. Golling175, N.P. Gollub29, S.N. Golovnia128,

A. Gomes124a,s, L.S. Gomez Fajardo41, R. Gonçalo76, L. Gonella20, C. Gong32b, A. Gonidec29,

S. Gonzalez172, S. González de la Hoz167a,167b, M.L. Gonzalez Silva26, B. Gonzalez-Pineiro88,

S. Gonzalez-Sevilla49, J.J. Goodson148, L. Goossens29, P.A. Gorbounov95, H.A. Gordon24, I. Gorelov103,

G. Gorfine174, B. Gorini29, E. Gorini72a,72b, A. Gorišek74, E. Gornicki38, S.A. Gorokhov128, B.T. Gorski29,

V.N. Goryachev128, B. Gosdzik41, M. Gosselink105, M.I. Gostkin65, M. Gouanère4, I. Gough Eschrich163,

M. Gouighri135a, D. Goujdami135a, M.P. Goulette49, A.G. Goussiou138, C. Goy4, I. Grabowska-Bold163,t,

V. Grabski176, P. Grafström29, C. Grah174, K.-J. Grahn147, F. Grancagnolo72a, S. Grancagnolo15,

V. Grassi148, V. Gratchev121, N. Grau34, H.M. Gray34,u, J.A. Gray148, E. Graziani134a, O.G. Grebenyuk121,

B. Green76, D. Greenfield129, T. Greenshaw73, Z.D. Greenwood24,v, I.M. Gregor41, P. Grenier143,

A. Grewal118, E. Griesmayer46, J. Griffiths138, N. Grigalashvili65, A.A. Grillo137, K. Grimm148,

S. Grinstein11, Y.V. Grishkevich97, J.-F. Grivaz115, L.S. Groer158, J. Grognuz29, M. Groh99, E. Gross171,

J. Grosse-Knetter54, J. Groth-Jensen79, M. Gruwe29, K. Grybel141, V.J. Guarino5, C. Guicheney33,

A. Guida72a,72b, T. Guillemin4, S. Guindon54, H. Guler85,w, J. Gunther125, B. Guo158, A. Gupta30,

Y. Gusakov65, V.N. Gushchin128, A. Gutierrez93, P. Gutierrez111, N. Guttman153, O. Gutzwiller172,

C. Guyot136, C. Gwenlan118, C.B. Gwilliam73, A. Haas143, S. Haas29, C. Haber14, G. Haboubi123,

R. Hackenburg24, H.K. Hadavand39, D.R. Hadley17, C. Haeberli16, P. Haefner99, R. Härtel99, F. Hahn29,

S. Haider29, Z. Hajduk38, H. Hakobyan176, J. Haller41,x, G.D. Hallewell83, K. Hamacher174,

A. Hamilton49, S. Hamilton161, H. Han32a, L. Han32b, K. Hanagaki116, M. Hance120, C. Handel81,

Page 10

336

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

P. Hanke58a, C.J. Hansen166, J.R. Hansen35, J.B. Hansen35, J.D. Hansen35, P.H. Hansen35,

T. Hansl-Kozanecka137, P. Hansson143, K. Hara160, G.A. Hare137, T. Harenberg174, R. Harper139,

R.D. Harrington21, O.M. Harris138, K. Harrison17, J.C. Hart129, J. Hartert48, F. Hartjes105, T. Haruyama66,

A. Harvey56, S. Hasegawa101, Y. Hasegawa140, K. Hashemi22, S. Hassani136, M. Hatch29, D. Hauff99,

S. Haug16, M. Hauschild29, R. Hauser88, M. Havranek125, B.M. Hawes118, C.M. Hawkes17,

R.J. Hawkings29, D. Hawkins163, T. Hayakawa67, H.S. Hayward73, S.J. Haywood129, E. Hazen21,

M. He32d, S.J. Head17, V. Hedberg79, L. Heelan28, S. Heim88, B. Heinemann14, S. Heisterkamp35,

L. Helary4, M. Heldmann48, M. Heller115, S. Hellman146a,146b, C. Helsens11, T. Hemperek20,

R.C.W. Henderson71, P.J. Hendriks105, M. Henke58a, A. Henrichs54, A.M. Henriques Correia29,

S. Henrot-Versille115, F. Henry-Couannier83, C. Hensel54, T. Henß174, Y. Hernández Jiménez167a,167b,

A.D. Hershenhorn152, G. Herten48, R. Hertenberger98, L. Hervas29, N.P. Hessey105, A. Hidvegi146a,

E. Higón-Rodriguez167a,167b, D. Hill5,ax, J.C. Hill27, N. Hill5, K.H. Hiller41, S. Hillert20, S.J. Hillier17,

I. Hinchliffe14, D. Hindson118, E. Hines120, M. Hirose116, F. Hirsch42, D. Hirschbuehl174, J. Hobbs148,

N. Hod153, M.C. Hodgkinson139, P. Hodgson139, A. Hoecker29, M.R. Hoeferkamp103, J. Hoffman39,

D. Hoffmann83, M. Hohlfeld81, M. Holder141, T.I. Hollins17, A. Holmes118, S.O. Holmgren146a,

T. Holy127, J.L. Holzbauer88, R.J. Homer17, Y. Homma67, T. Horazdovsky127, C. Horn143, S. Horner48,

K. Horton118, J.-Y. Hostachy55, T. Hott99, S. Hou151, M.A. Houlden73, A. Hoummada135a, D.F. Howell118,

J. Hrivnac115, I. Hruska125, T. Hryn’ova4, P.J. Hsu175, S.-C. Hsu14, G.S. Huang111, Z. Hubacek127,

F. Hubaut83, F. Huegging20, T.B. Huffman118, E.W. Hughes34, G. Hughes71, R.E. Hughes-Jones82,

M. Huhtinen29, P. Hurst57, M. Hurwitz14, U. Husemann41, N. Huseynov10, J. Huston88, J. Huth57,

G. Iacobucci102a, G. Iakovidis9, M. Ibbotson82, I. Ibragimov141, R. Ichimiya67, L. Iconomidou-Fayard115,

J. Idarraga159b, M. Idzik37, P. Iengo4, O. Igonkina105, Y. Ikegami66, M. Ikeno66, Y. Ilchenko39,

D. Iliadis154, D. Imbault78, M. Imhaeuser174, M. Imori155, T. Ince20, J. Inigo-Golfin29, P. Ioannou8,

M. Iodice134a, G. Ionescu4, A. Irles Quiles167a,167b, K. Ishii66, A. Ishikawa67, M. Ishino66,

R. Ishmukhametov39, T. Isobe155, C. Issever118, S. Istin18a, Y. Itoh101, A.V. Ivashin128, W. Iwanski38,

H. Iwasaki66, J.M. Izen40, V. Izzo102a, B. Jackson120, J.N. Jackson73, P. Jackson143, M.R. Jaekel29,

M. Jahoda125, V. Jain61, K. Jakobs48, S. Jakobsen35, J. Jakubek127, D.K. Jana111, E. Jankowski158,

E. Jansen77, A. Jantsch99, M. Janus20, R.C. Jared172, G. Jarlskog79, L. Jeanty57, K. Jelen37,

I. Jen-La Plante30, P. Jenni29, A. Jeremie4, P. Jež35, S. Jézéquel4, H. Ji172, W. Ji79, J. Jia148, Y. Jiang32b,

M. Jimenez Belenguer29, G. Jin32b, S. Jin32a, O. Jinnouchi157, M.D. Joergensen35, D. Joffe39,

L.G. Johansen13, M. Johansen146a,146b, K.E. Johansson146a, P. Johansson139, S. Johnert41, K.A. Johns6,

K. Jon-And146a,146b, G. Jones82, M. Jones118, R.W.L. Jones71, T.W. Jones77, T.J. Jones73, O. Jonsson29,

K.K. Joo158,y, D. Joos48, C. Joram29, P.M. Jorge124a,c, S. Jorgensen11, J. Joseph14, V. Juranek125,

P. Jussel62, V.V. Kabachenko128, S. Kabana16, M. Kaci167a,167b, A. Kaczmarska38, P. Kadlecik35,

M. Kado115, H. Kagan109, M. Kagan57, S. Kaiser99, E. Kajomovitz152, S. Kalinin174, L.V. Kalinovskaya65,

S. Kama39, N. Kanaya155, M. Kaneda155, V.A. Kantserov96, J. Kanzaki66, B. Kaplan175, A. Kapliy30,

J. Kaplon29, D. Kar43, M. Karagounis20, M. Karagoz118, M. Karnevskiy41, K. Karr5, V. Kartvelishvili71,

A.N. Karyukhin128, L. Kashif57, A. Kasmi39, R.D. Kass109, A. Kastanas13, M. Kastoryano175, M. Kataoka4,

Y. Kataoka155, E. Katsoufis9, J. Katzy41, V. Kaushik6, K. Kawagoe67, T. Kawamoto155, G. Kawamura81,

M.S. Kayl105, F. Kayumov94, V.A. Kazanin107, M.Y. Kazarinov65, S.I. Kazi86, J.R. Keates82, R. Keeler169,

P.T. Keener120, R. Kehoe39, M. Keil54, G.D. Kekelidze65, M. Kelly82, J. Kennedy98, C.J. Kenney143,

M. Kenyon53, O. Kepka125, N. Kerschen29, B.P. Kerševan74, S. Kersten174, K. Kessoku155, C. Ketterer48,

M. Khakzad28, F. Khalil-zada10, H. Khandanyan165, A. Khanov112, D. Kharchenko65, A. Khodinov148,

A.G. Kholodenko128, A. Khomich58a, G. Khoriauli20, N. Khovanskiy65, V. Khovanskiy95, E. Khramov65,

J. Khubua51a,51b, G. Kilvington76, H. Kim7, M.S. Kim2, P.C. Kim143, S.H. Kim160, N. Kimura170,

O. Kind15, P. Kind174, B.T. King73, M. King67, J. Kirk129, G.P. Kirsch118, L.E. Kirsch22, A.E. Kiryunin99,

D. Kisielewska37, B. Kisielewski38, T. Kittelmann123, A.M. Kiver128, H. Kiyamura67, E. Kladiva144b,

J. Klaiber-Lodewigs42, M. Klein73, U. Klein73, K. Kleinknecht81, M. Klemetti85, A. Klier171,

A. Klimentov24, R. Klingenberg42, E.B. Klinkby44, T. Klioutchnikova29, P.F. Klok104, S. Klous105,

E.-E. Kluge58a, T. Kluge73, P. Kluit105, S. Kluth99, N.S. Knecht158, E. Kneringer62, J. Knobloch29,

B.R. Ko44, T. Kobayashi155, M. Kobel43, B. Koblitz29, M. Kocian143, A. Kocnar113, P. Kodys126,

K. Köneke29, A.C. König104, S. Koenig81, S. König48, L. Köpke81, F. Koetsveld104, P. Koevesarki20,

Page 11

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

337

T. Koffas29, E. Koffeman105, F. Kohn54, Z. Kohout127, T. Kohriki66, T. Koi143, T. Kokott20,

G.M. Kolachev107, H. Kolanoski15, V. Kolesnikov65, I. Koletsou4, J. Koll88, D. Kollar29, M. Kollefrath48,

S. Kolos163,z, S.D. Kolya82, A.A. Komar94, J.R. Komaragiri142, T. Kondo66, T. Kono41,aa, A.I. Kononov48,

R. Konoplich108, S.P. Konovalov94, N. Konstantinidis77, A. Kootz174, S. Koperny37, S.V. Kopikov128,

K. Korcyl38, K. Kordas154, V. Koreshev128, A. Korn14, A. Korol107, I. Korolkov11, E.V. Korolkova139,

V.A. Korotkov128, O. Kortner99, S. Kortner99, V.V. Kostyukhin20, M.J. Kotamäki29, S. Kotov99,

V.M. Kotov65, K.Y. Kotov107, C. Kourkoumelis8, A. Koutsman105, R. Kowalewski169, H. Kowalski41,

T.Z. Kowalski37, W. Kozanecki136, A.S. Kozhin128, V. Kral127, V.A. Kramarenko97, G. Kramberger74,

O. Krasel42, M.W. Krasny78, A. Krasznahorkay108, J. Kraus88, A. Kreisel153, F. Krejci127,

J. Kretzschmar73, N. Krieger54, P. Krieger158, G. Krobath98, K. Kroeninger54, H. Kroha99, J. Kroll120,

J. Kroseberg20, J. Krstic12a, U. Kruchonak65, H. Krüger20, Z.V. Krumshteyn65, A. Kruth20, T. Kubota155,

S. Kuehn48, A. Kugel58c, T. Kuhl174, D. Kuhn62, V. Kukhtin65, Y. Kulchitsky90, S. Kuleshov31b,

C. Kummer98, M. Kuna83, N. Kundu118, J. Kunkle120, A. Kupco125, H. Kurashige67, M. Kurata160,

L.L. Kurchaninov159a, Y.A. Kurochkin90, V. Kus125, W. Kuykendall138, M. Kuze157, P. Kuzhir91,

O. Kvasnicka125, R. Kwee15, A. La Rosa29, L. La Rotonda36a,36b, L. Labarga80, J. Labbe4,

C. Lacasta167a,167b, F. Lacava132a,132b, H. Lacker15, D. Lacour78, V.R. Lacuesta167a,167b, E. Ladygin65,

R. Lafaye4, B. Laforge78, T. Lagouri80, S. Lai48, M. Lamanna29, M. Lambacher98, C.L. Lampen6,

W. Lampl6, E. Lancon136, U. Landgraf48, M.P.J. Landon75, H. Landsman152, J.L. Lane82, C. Lange41,

A.J. Lankford163, F. Lanni24, K. Lantzsch29, A. Lanza119a, V.V. Lapin128,ax, S. Laplace4, C. Lapoire83,

J.F. Laporte136, T. Lari89a, A.V. Larionov128, A. Larner118, C. Lasseur29, M. Lassnig29, W. Lau118,

P. Laurelli47, A. Lavorato118, W. Lavrijsen14, P. Laycock73, A.B. Lazarev65, A. Lazzaro89a,89b,

O. Le Dortz78, E. Le Guirriec83, C. Le Maner158, E. Le Menedeu136, M. Le Vine24, M. Leahu29,

A. Lebedev64, C. Lebel93, M. Lechowski115, T. LeCompte5, F. Ledroit-Guillon55, H. Lee105, J.S.H. Lee150,

S.C. Lee151, M. Lefebvre169, M. Legendre136, A. Leger49, B.C. LeGeyt120, F. Legger98, C. Leggett14,

M. Lehmacher20, G. Lehmann Miotto29, M. Lehto139, X. Lei6, M.A.L. Leite23b, R. Leitner126,

D. Lellouch171, J. Lellouch78, M. Leltchouk34, V. Lendermann58a, K.J.C. Leney73, T. Lenz174,

G. Lenzen174, B. Lenzi136, K. Leonhardt43, J. Lepidis174, C. Leroy93, J.-R. Lessard169, J. Lesser146a,

C.G. Lester27, A. Leung Fook Cheong172, J. Levêque83, D. Levin87, L.J. Levinson171, M.S. Levitski128,

M. Lewandowska21, M. Leyton15, B. Li32d, H. Li172, X. Li87, Z. Liang39, Z. Liang118,ab, B. Liberti133a,

P. Lichard29, M. Lichtnecker98, K. Lie165, W. Liebig173, R. Lifshitz152, J.N. Lilley17, H. Lim5,

A. Limosani86, M. Limper63, S.C. Lin151, F. Linde105, J.T. Linnemann88, E. Lipeles120, L. Lipinsky125,

A. Lipniacka13, T.M. Liss165, D. Lissauer24, A. Lister49, A.M. Litke137, C. Liu28, D. Liu151,ac, H. Liu87,

J.B. Liu87, M. Liu32b, S. Liu2, T. Liu39, Y. Liu32b, M. Livan119a,119b, S.S.A. Livermore118, A. Lleres55,

S.L. Lloyd75, E. Lobodzinska41, P. Loch6, W.S. Lockman137, S. Lockwitz175, T. Loddenkoetter20,

F.K. Loebinger82, A. Loginov175, C.W. Loh168, T. Lohse15, K. Lohwasser48, M. Lokajicek125, J. Loken118,

R.E. Long71, L. Lopes124a,c, D. Lopez Mateos34,ad, M. Losada162, P. Loscutoff14, M.J. Losty159a, X. Lou40,

A. Lounis115, K.F. Loureiro162, L. Lovas144a, J. Love21, P.A. Love71, A.J. Lowe143, F. Lu32a, J. Lu2, L. Lu39,

H.J. Lubatti138, C. Luci132a,132b, A. Lucotte55, A. Ludwig43, D. Ludwig41, I. Ludwig48, J. Ludwig48,

F. Luehring61, G. Luijckx105, D. Lumb48, L. Luminari132a, E. Lund117, B. Lund-Jensen147, B. Lundberg79,

J. Lundberg29, J. Lundquist35, M. Lungwitz81, A. Lupi122a,122b, G. Lutz99, D. Lynn24, J. Lynn118, J. Lys14,

E. Lytken79, H. Ma24, L.L. Ma172, M. Maaßen48, J.A. Macana Goia93, G. Maccarrone47, A. Macchiolo99,

B. Maˇ cek74, J. Machado Miguens124a,c, D. Macina49, R. Mackeprang35, D. MacQueen2, R.J. Madaras14,

W.F. Mader43, R. Maenner58c, T. Maeno24, P. Mättig174, S. Mättig41, P.J. Magalhaes Martins124a,i,

L. Magnoni29, E. Magradze51a,51b, C.A. Magrath104, Y. Mahalalel153, K. Mahboubi48, A. Mahmood1,

G. Mahout17, C. Maiani132a,132b, C. Maidantchik23a, A. Maio124a,s, S. Majewski24, Y. Makida66,

M. Makouski128, N. Makovec115, P. Mal6, Pa. Malecki38, P. Malecki38, V.P. Maleev121, F. Malek55,

U. Mallik63, D. Malon5, S. Maltezos9, V. Malyshev107, S. Malyukov65, M. Mambelli30, R. Mameghani98,

J. Mamuzic12b, A. Manabe66, A. Manara61, L. Mandelli89a, I. Mandi´ c74, R. Mandrysch15, J. Maneira124a,

P.S. Mangeard88, M. Mangin-Brinet49, I.D. Manjavidze65, A. Mann54, W.A. Mann161, P.M. Manning137,

A. Manousakis-Katsikakis8, B. Mansoulie136, A. Manz99, A. Mapelli29, L. Mapelli29, L. March80,

J.F. Marchand4, F. Marchese133a,133b, M. Marchesotti29, G. Marchiori78, M. Marcisovsky125,

A. Marin21,ax, C.P. Marino61, F. Marroquim23a, R. Marshall82, Z. Marshall34,ad, F.K. Martens158,

Page 12

338

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

S. Marti-Garcia167a,167b, A.J. Martin75, A.J. Martin175, B. Martin29, B. Martin88, F.F. Martin120,

J.P. Martin93, Ph. Martin55, T.A. Martin17, B. Martin dit Latour49, M. Martinez11,

V. Martinez Outschoorn57, A. Martini47, A.C. Martyniuk82, F. Marzano132a, A. Marzin136, L. Masetti81,

T. Mashimo155, R. Mashinistov94, J. Masik82, A.L. Maslennikov107, M. Maß42, I. Massa19a,19b,

G. Massaro105, N. Massol4, A. Mastroberardino36a,36b, T. Masubuchi155, M. Mathes20, P. Matricon115,

H. Matsumoto155, H. Matsunaga155, T. Matsushita67, C. Mattravers118,ae, J.M. Maugain29,

S.J. Maxfield73, E.N. May5, J.K. Mayer158, A. Mayne139, R. Mazini151, M. Mazur20, M. Mazzanti89a,

E. Mazzoni122a,122b, J. Mc Donald85, S.P. Mc Kee87, A. McCarn165, R.L. McCarthy148, T.G. McCarthy28,

N.A. McCubbin129, K.W. McFarlane56, S. McGarvie76, H. McGlone53, G. Mchedlidze51a,51b,

R.A. McLaren29, S.J. McMahon129, T.R. McMahon76, T.J. McMahon17, R.A. McPherson169,l, A. Meade84,

J. Mechnich105, M. Mechtel174, M. Medinnis41, R. Meera-Lebbai111, T. Meguro116, R. Mehdiyev93,

S. Mehlhase41, A. Mehta73, K. Meier58a, J. Meinhardt48, B. Meirose79, C. Melachrinos30,

B.R. Mellado Garcia172, L. Mendoza Navas162, Z. Meng151,af, A. Mengarelli19a,19b, S. Menke99,

C. Menot29, E. Meoni11, D. Merkl98, P. Mermod118, L. Merola102a,102b, C. Meroni89a, F.S. Merritt30,

A.M. Messina29, I. Messmer48, J. Metcalfe103, A.S. Mete64, S. Meuser20, C. Meyer81, J.-P. Meyer136,

J. Meyer173, J. Meyer54, T.C. Meyer29, W.T. Meyer64, J. Miao32d, S. Michal29, L. Micu25a,

R.P. Middleton129, P. Miele29, S. Migas73, A. Migliaccio102a,102b, L. Mijovi´ c41, G. Mikenberg171,

M. Mikestikova125, B. Mikulec49, M. Mikuž74, D.W. Miller143, R.J. Miller88, W.J. Mills168, C. Mills57,

A. Milov171, D.A. Milstead146a,146b, D. Milstein171, S. Mima110, A.A. Minaenko128, M. Miñano167a,167b,

I.A. Minashvili65, A.I. Mincer108, B. Mindur37, M. Mineev65, Y. Ming130, L.M. Mir11, G. Mirabelli132a,

L. Miralles Verge11, S. Misawa24, S. Miscetti47, A. Misiejuk76, A. Mitra118, J. Mitrevski137,

G.Y. Mitrofanov128, V.A. Mitsou167a,167b, S. Mitsui66, P.S. Miyagawa82, K. Miyazaki67, J.U. Mjörnmark79,

D. Mladenov22, T. Moa146a,146b, M. Moch132a,132b, P. Mockett138, S. Moed57, V. Moeller27, K. Mönig41,

N. Möser20, B. Mohn13, W. Mohr48, S. Mohrdieck-Möck99, A.M. Moisseev128,ax, R. Moles-Valls167a,167b,

J. Molina-Perez29, L. Moneta49, J. Monk77, E. Monnier83, S. Montesano89a,89b, F. Monticelli70,

R.W. Moore2, G.F. Moorhead86, C. Mora Herrera49, A. Moraes53, A. Morais124a,c, J. Morel54,

G. Morello36a,36b, D. Moreno81, M. Moreno Llácer167a,167b, P. Morettini50a, D. Morgan139, M. Morii57,

J. Morin75, Y. Morita66, A.K. Morley29, G. Mornacchi29, M.-C. Morone49, S.V. Morozov96, J.D. Morris75,

H.G. Moser99, M. Mosidze51a,51b, J. Moss109, A. Moszczynski38, R. Mount143, E. Mountricha9,

S.V. Mouraviev94, T.H. Moye17, E.J.W. Moyse84, M. Mudrinic12b, F. Mueller58a, J. Mueller123,

K. Mueller20, T.A. Müller98, D. Muenstermann42, A. Muijs105, A. Muir168, A. Munar120, Y. Munwes153,

K. Murakami66, R. Murillo Garcia163, W.J. Murray129, I. Mussche105, E. Musto102a,102b, A.G. Myagkov128,

M. Myska125, J. Nadal11, K. Nagai160, K. Nagano66, Y. Nagasaka60, A.M. Nairz29, D. Naito110,

K. Nakamura155, I. Nakano110, G. Nanava20, A. Napier161, M. Nash77,ag, I. Nasteva82, N.R. Nation21,

T. Nattermann20, T. Naumann41, F. Nauyock82, G. Navarro162, S.K. Nderitu85, H.A. Neal87, E. Nebot80,

P. Nechaeva94, A. Negri119a,119b, G. Negri29, A. Nelson64, S. Nelson143, T.K. Nelson143, S. Nemecek125,

P. Nemethy108, A.A. Nepomuceno23a, M. Nessi29, S.Y. Nesterov121, M.S. Neubauer165, L. Neukermans4,

A. Neusiedl81, R.M. Neves108, P. Nevski24, F.M. Newcomer120, C. Nicholson53, R.B. Nickerson118,

R. Nicolaidou136, L. Nicolas139, G. Nicoletti47, B. Nicquevert29, F. Niedercorn115, J. Nielsen137,

T. Niinikoski29, A. Nikiforov15, V. Nikolaenko128, K. Nikolaev65, I. Nikolic-Audit78, K. Nikolopoulos24,

H. Nilsen48, P. Nilsson7, Y. Ninomiya155, A. Nisati132a, T. Nishiyama67, R. Nisius99, L. Nodulman5,

M. Nomachi116, I. Nomidis154, H. Nomoto155, M. Nordberg29, B. Nordkvist146a,146b,

O. Norniella Francisco11, P.R. Norton129, D. Notz41, J. Novakova126, M. Nozaki66, M. Nožiˇ cka41,

I.M. Nugent159a, A.-E. Nuncio-Quiroz20, G. Nunes Hanninger20, T. Nunnemann98, E. Nurse77,

T. Nyman29, S.W. O’Neale17,ax, D.C. O’Neil142, V. O’Shea53, F.G. Oakham28,h, H. Oberlack99, J. Ocariz78,

A. Ochi67, S. Oda155, S. Odaka66, J. Odier83, G.A. Odino50a,50b, H. Ogren61, A. Oh82, S.H. Oh44,

C.C. Ohm146a,146b, T. Ohshima101, H. Ohshita140, T.K. Ohska66, T. Ohsugi59, S. Okada67, H. Okawa163,

Y. Okumura101, T. Okuyama155, M. Olcese50a, A.G. Olchevski65, M. Oliveira124a,i, D. Oliveira Damazio24,

C. Oliver80, J. Oliver57, E. Oliver Garcia167a,167b, D. Olivito120, A. Olszewski38, J. Olszowska38,

C. Omachi67,ah, A. Onofre124a,ai, P.U.E. Onyisi30, C.J. Oram159a, G. Ordonez104, M.J. Oreglia30,

F. Orellana49, Y. Oren153, D. Orestano134a,134b, I. Orlov107, C. Oropeza Barrera53, R.S. Orr158,

E.O. Ortega130, B. Osculati50a,50b, R. Ospanov120, C. Osuna11, G. Otero y Garzon26, J. P Ottersbach105,

Page 13

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

339

B. Ottewell118, M. Ouchrif135c, F. Ould-Saada117, A. Ouraou136, Q. Ouyang32a, M. Owen82, S. Owen139,

A. Oyarzun31b, O.K. Øye13, V.E. Ozcan77, K. Ozone66, N. Ozturk7, A. Pacheco Pages11,

C. Padilla Aranda11, E. Paganis139, F. Paige24, K. Pajchel117, S. Palestini29, J. Palla29, D. Pallin33,

A. Palma124a,c, J.D. Palmer17, M.J. Palmer27, Y.B. Pan172, E. Panagiotopoulou9, B. Panes31a,

N. Panikashvili87, V.N. Panin107, S. Panitkin24, D. Pantea25a, M. Panuskova125, V. Paolone123,

A. Paoloni133a,133b, Th.D. Papadopoulou9, A. Paramonov5, S.J. Park54, W. Park24,aj, M.A. Parker27,

S.I. Parker14, F. Parodi50a,50b, J.A. Parsons34, U. Parzefall48, E. Pasqualucci132a, A. Passeri134a,

F. Pastore134a,134b, Fr. Pastore29, G. Pásztor49,ak, S. Pataraia172, N. Patel150, J.R. Pater82,

S. Patricelli102a,102b, T. Pauly29, L.S. Peak150, M. Pecsy144a, M.I. Pedraza Morales172, S.J.M. Peeters105,

S.V. Peleganchuk107, H. Peng172, R. Pengo29, A. Penson34, J. Penwell61, M. Perantoni23a, K. Perez34,ad,

E. Perez Codina11, M.T. Pérez García-Estañ167a,167b, V. Perez Reale34, I. Peric20, L. Perini89a,89b,

H. Pernegger29, R. Perrino72a, P. Perrodo4, S. Persembe3a, P. Perus115, V.D. Peshekhonov65, E. Petereit5,

O. Peters105, B.A. Petersen29, J. Petersen29, T.C. Petersen35, E. Petit83, A. Petridis154, C. Petridou154,

E. Petrolo132a, F. Petrucci134a,134b, D. Petschull41, M. Petteni142, R. Pezoa31b, B. Pfeifer48, A. Phan86,

A.W. Phillips27, P.W. Phillips129, G. Piacquadio29, E. Piccaro75, M. Piccinini19a,19b, A. Pickford53,

R. Piegaia26, J.E. Pilcher30, A.D. Pilkington82, J. Pina124a,s, M. Pinamonti164a,164c, J.L. Pinfold2, J. Ping32c,

B. Pinto124a,c, O. Pirotte29, C. Pizio89a,89b, R. Placakyte41, M. Plamondon169, W.G. Plano82,

M.-A. Pleier24, A.V. Pleskach128, A. Poblaguev175, S. Poddar58a, F. Podlyski33, P. Poffenberger169,

L. Poggioli115, T. Poghosyan20, M. Pohl49, F. Polci55, G. Polesello119a, A. Policicchio138, A. Polini19a,

J. Poll75, V. Polychronakos24, D.M. Pomarede136, D. Pomeroy22, K. Pommès29, P. Ponsot136,

L. Pontecorvo132a, B.G. Pope88, G.A. Popeneciu25a, R. Popescu24, D.S. Popovic12a, A. Poppleton29,

J. Popule125, X. Portell Bueso48, R. Porter163, C. Posch21, G.E. Pospelov99, S. Pospisil127, M. Potekhin24,

I.N. Potrap99, C.J. Potter149, C.T. Potter85, K.P. Potter82, G. Poulard29, J. Poveda172, R. Prabhu77,

P. Pralavorio83, S. Prasad57, M. Prata119a,119b, R. Pravahan7, S. Prell64, K. Pretzl16, L. Pribyl29,

D. Price61, L.E. Price5, M.J. Price29, P.M. Prichard73, D. Prieur123, M. Primavera72a, K. Prokofiev29,

F. Prokoshin31b, S. Protopopescu24, J. Proudfoot5, X. Prudent43, H. Przysiezniak4, S. Psoroulas20,

E. Ptacek114, C. Puigdengoles11, J. Purdham87, M. Purohit24,al, P. Puzo115, Y. Pylypchenko117, M. Qi32c,

J. Qian87, W. Qian129, Z. Qian83, Z. Qin41, D. Qing159a, A. Quadt54, D.R. Quarrie14, W.B. Quayle172,

F. Quinonez31a, M. Raas104, V. Radeka24, V. Radescu58b, B. Radics20, T. Rador18a, F. Ragusa89a,89b,

G. Rahal180, A.M. Rahimi109, D. Rahm24, C. Raine53,ax, B. Raith20, S. Rajagopalan24, S. Rajek42,

M. Rammensee48, M. Rammes141, M. Ramstedt146a,146b, P.N. Ratoff71, F. Rauscher98, E. Rauter99,

M. Raymond29, A.L. Read117, D.M. Rebuzzi119a,119b, A. Redelbach173, G. Redlinger24, R. Reece120,

K. Reeves40, A. Reichold105, E. Reinherz-Aronis153, A. Reinsch114, I. Reisinger42, D. Reljic12a,

C. Rembser29, Z.L. Ren151, P. Renkel39, B. Rensch35, S. Rescia24, M. Rescigno132a, S. Resconi89a,

B. Resende136, P. Reznicek126, R. Rezvani158, A. Richards77, R.A. Richards88, R. Richter99,

E. Richter-Was38,am, M. Ridel78, S. Rieke81, M. Rijpstra105, M. Rijssenbeek148, A. Rimoldi119a,119b,

L. Rinaldi19a, R.R. Rios39, I. Riu11, G. Rivoltella89a,89b, F. Rizatdinova112, E. Rizvi75, D.A. Roa Romero162,

S.H. Robertson85,l, A. Robichaud-Veronneau49, D. Robinson27, J.E.M. Robinson77, M. Robinson114,

A. Robson53, J.G. Rocha de Lima106, C. Roda122a,122b, D. Roda Dos Santos29, S. Rodier80,

D. Rodriguez162, Y. Rodriguez Garcia15, A. Roe54, S. Roe29, O. Røhne117, V. Rojo1, S. Rolli161,

A. Romaniouk96, V.M. Romanov65, G. Romeo26, D. Romero Maltrana31a, L. Roos78, E. Ros167a,167b,

S. Rosati138, G.A. Rosenbaum158, E.I. Rosenberg64, P.L. Rosendahl13, L. Rosselet49, V. Rossetti11,

E. Rossi102a,102b, L.P. Rossi50a, L. Rossi89a,89b, M. Rotaru25a, J. Rothberg138, I. Rottländer20,

D. Rousseau115, C.R. Royon136, A. Rozanov83, Y. Rozen152, X. Ruan115, B. Ruckert98, N. Ruckstuhl105,

V.I. Rud97, G. Rudolph62, F. Rühr6, F. Ruggieri134a, A. Ruiz-Martinez64, E. Rulikowska-Zarebska37,

V. Rumiantsev91,ax, L. Rumyantsev65, K. Runge48, O. Runolfsson20, Z. Rurikova48, N.A. Rusakovich65,

D.R. Rust61, J.P. Rutherfoord6, C. Ruwiedel20, P. Ruzicka125, Y.F. Ryabov121, V. Ryadovikov128, P. Ryan88,

G. Rybkin115, S. Rzaeva10, A.F. Saavedra150, I. Sadeh153, H.F.-W. Sadrozinski137, R. Sadykov65,

F. Safai Tehrani132a,132b, H. Sakamoto155, P. Sala89a, G. Salamanna105, A. Salamon133a, M. Saleem111,

D. Salihagic99, A. Salnikov143, J. Salt167a,167b, B.M. Salvachua Ferrando5, D. Salvatore36a,36b,

F. Salvatore149, A. Salvucci47, A. Salzburger29, D. Sampsonidis154, B.H. Samset117, H. Sandaker13,

H.G. Sander81, M.P. Sanders98, M. Sandhoff174, P. Sandhu158, T. Sandoval27, R. Sandstroem105,

Page 14

340

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

S. Sandvoss174, D.P.C. Sankey129, B. Sanny174, A. Sansoni47, C. Santamarina Rios85, C. Santoni33,

R. Santonico133a,133b, H. Santos124a, J.G. Saraiva124a,s, T. Sarangi172, E. Sarkisyan-Grinbaum7,

F. Sarri122a,122b, G. Sartisohn174, O. Sasaki66, T. Sasaki66, N. Sasao68, I. Satsounkevitch90, G. Sauvage4,

P. Savard158,h, A.Y. Savine6, V. Savinov123, P. Savva9, L. Sawyer24,an, D.H. Saxon53, L.P. Says33,

C. Sbarra19a,19b, A. Sbrizzi19a,19b, O. Scallon93, D.A. Scannicchio29, J. Schaarschmidt43, P. Schacht99,

U. Schäfer81, S. Schaetzel58b, A.C. Schaffer115, D. Schaile98, M. Schaller29, R.D. Schamberger148,

A.G. Schamov107, V. Scharf58a, V.A. Schegelsky121, D. Scheirich87, M. Schernau163, M.I. Scherzer14,

C. Schiavi50a,50b, J. Schieck99, M. Schioppa36a,36b, S. Schlenker29, J.L. Schlereth5, E. Schmidt48,

M.P. Schmidt175,ax, K. Schmieden20, C. Schmitt81, M. Schmitz20, R.C. Scholte105, A. Schöning58b,

M. Schott29, D. Schouten142, J. Schovancova125, M. Schram85, A. Schreiner63, C. Schroeder81,

N. Schroer58c, M. Schroers174, D. Schroff48, S. Schuh29, G. Schuler29, J. Schultes174,

H.-C. Schultz-Coulon58a, J.W. Schumacher43, M. Schumacher48, B.A. Schumm137, Ph. Schune136,

C. Schwanenberger82, A. Schwartzman143, D. Schweiger29, Ph. Schwemling78, R. Schwienhorst88,

R. Schwierz43, J. Schwindling136, W.G. Scott129, J. Searcy114, E. Sedykh121, E. Segura11, S.C. Seidel103,

A. Seiden137, F. Seifert43, J.M. Seixas23a, G. Sekhniaidze102a, D.M. Seliverstov121, B. Sellden146a,

G. Sellers73, M. Seman144b, N. Semprini-Cesari19a,19b, C. Serfon98, L. Serin115, R. Seuster99,

H. Severini111, M.E. Sevior86, A. Sfyrla29, E. Shabalina54, M. Shamim114, L.Y. Shan32a, J.T. Shank21,

Q.T. Shao86, M. Shapiro14, P.B. Shatalov95, L. Shaver6, C. Shaw53, K. Shaw139, D. Sherman29,

P. Sherwood77, A. Shibata108, P. Shield118, S. Shimizu29, M. Shimojima100, T. Shin56, A. Shmeleva94,

M.J. Shochet30, M.A. Shupe6, P. Sicho125, A. Sidoti15, A. Siebel174, F. Siegert77, J. Siegrist14,

Dj. Sijacki12a, O. Silbert171, J. Silva124a,ao, Y. Silver153, D. Silverstein143, S.B. Silverstein146a, V. Simak127,

Lj. Simic12a, S. Simion115, B. Simmons77, M. Simonyan35, P. Sinervo158, N.B. Sinev114, V. Sipica141,

G. Siragusa81, A.N. Sisakyan65, S.Yu. Sivoklokov97, J. Sjölin146a,146b, T.B. Sjursen13, L.A. Skinnari14,

K. Skovpen107, P. Skubic111, N. Skvorodnev22, M. Slater17, T. Slavicek127, K. Sliwa161, T.J. Sloan71,

J. Sloper29, V. Smakhtin171, S.Yu. Smirnov96, Y. Smirnov24, L.N. Smirnova97, O. Smirnova79,

B.C. Smith57, D. Smith143, K.M. Smith53, M. Smizanska71, K. Smolek127, A.A. Snesarev94, S.W. Snow82,

J. Snow111, J. Snuverink105, S. Snyder24, M. Soares124a, R. Sobie169,l, J. Sodomka127, A. Soffer153,

C.A. Solans167a,167b, M. Solar127, J. Solc127, E. Solfaroli Camillocci132a,132b, A.A. Solodkov128,

O.V. Solovyanov128, R. Soluk2, J. Sondericker24, N. Soni2, V. Sopko127, B. Sopko127, M. Sorbi89a,89b,

M. Sosebee7, A. Soukharev107, S. Spagnolo72a,72b, F. Spanò34, P. Speckmayer29, E. Spencer137,

R. Spighi19a, G. Spigo29, F. Spila132a,132b, E. Spiriti134a, R. Spiwoks29, L. Spogli134a,134b, M. Spousta126,

T. Spreitzer158, B. Spurlock7, R.D.St. Denis53, T. Stahl141, J. Stahlman120, R. Stamen58a, S.N. Stancu163,

E. Stanecka29, R.W. Stanek5, C. Stanescu134a, S. Stapnes117, E.A. Starchenko128, J. Stark55, P. Staroba125,

P. Starovoitov91, J. Stastny125, A. Staude98, P. Stavina144a, G. Stavropoulos14, G. Steele53, E. Stefanidis77,

P. Steinbach43, P. Steinberg24, I. Stekl127, B. Stelzer142, H.J. Stelzer41, O. Stelzer-Chilton159a,

H. Stenzel52, K. Stevenson75, G.A. Stewart53, W. Stiller99, T. Stockmanns20, M.C. Stockton29,

M. Stodulski38, K. Stoerig48, G. Stoicea25a, S. Stonjek99, P. Strachota126, A.R. Stradling7, A. Straessner43,

J. Strandberg87, S. Strandberg146a,146b, A. Strandlie117, M. Strang109, M. Strauss111, P. Strizenec144b,

R. Ströhmer173, D.M. Strom114, J.A. Strong76,ax, R. Stroynowski39, J. Strube129, B. Stugu13,

I. Stumer24,ax, J. Stupak148, P. Sturm174, D.A. Soh151,ap, D. Su143, Y. Sugaya116, T. Sugimoto101,

C. Suhr106, K. Suita67, M. Suk126, V.V. Sulin94, S. Sultansoy3d, T. Sumida29, X.H. Sun32d,

J.E. Sundermann48, K. Suruliz164a,164b, S. Sushkov11, G. Susinno36a,36b, M.R. Sutton139, Y. Suzuki66,

Yu.M. Sviridov128, S. Swedish168, I. Sykora144a, T. Sykora126, R.R. Szczygiel38, B. Szeless29,

T. Szymocha38, J. Sánchez167a,167b, D. Ta105, S. Taboada Gameiro29, K. Tackmann29, A. Taffard163,

R. Tafirout159a, A. Taga117, Y. Takahashi101, H. Takai24, R. Takashima69, H. Takeda67, T. Takeshita140,

M. Talby83, A. Talyshev107, M.C. Tamsett76, J. Tanaka155, R. Tanaka115, S. Tanaka131, S. Tanaka66,

Y. Tanaka100, K. Tani67, G.P. Tappern29, S. Tapprogge81, D. Tardif158, S. Tarem152, F. Tarrade24,

G.F. Tartarelli89a, P. Tas126, M. Tasevsky125, E. Tassi36a,36b, M. Tatarkhanov14, C. Taylor77, F.E. Taylor92,

G. Taylor137, G.N. Taylor86, R.P. Taylor169, W. Taylor159b, M. Teixeira Dias Castanheira75,

P. Teixeira-Dias76, K.K. Temming48, H. Ten Kate29, P.K. Teng151, Y.D. Tennenbaum-Katan152, S. Terada66,

K. Terashi155, J. Terron80, M. Terwort41,x, M. Testa47, R.J. Teuscher158,l, C.M. Tevlin82, J. Thadome174,

J. Therhaag20, T. Theveneaux-Pelzer78, M. Thioye175, S. Thoma48, J.P. Thomas17, E.N. Thompson84,

Page 15

ATLAS Collaboration / Physics Letters B 694 (2011) 327–345

341

P.D. Thompson17, P.D. Thompson158, R.J. Thompson82, A.S. Thompson53, E. Thomson120, M. Thomson27,

R.P. Thun87, T. Tic125, V.O. Tikhomirov94, Y.A. Tikhonov107, C.J.W.P. Timmermans104, P. Tipton175,

F.J. Tique Aires Viegas29, S. Tisserant83, J. Tobias48, B. Toczek37, T. Todorov4, S. Todorova-Nova161,

B. Toggerson163, J. Tojo66, S. Tokár144a, K. Tokunaga67, K. Tokushuku66, K. Tollefson88, L. Tomasek125,

M. Tomasek125, M. Tomoto101, D. Tompkins6, L. Tompkins14, K. Toms103, A. Tonazzo134a,134b,

G. Tong32a, A. Tonoyan13, C. Topfel16, N.D. Topilin65, I. Torchiani29, E. Torrence114,

E. Torró Pastor167a,167b, J. Toth83,ak, F. Touchard83, D.R. Tovey139, D. Traynor75, T. Trefzger173, J. Treis20,

L. Tremblet29, A. Tricoli29, I.M. Trigger159a, S. Trincaz-Duvoid78, T.N. Trinh78, M.F. Tripiana70,

N. Triplett64, W. Trischuk158, A. Trivedi24,aq, B. Trocmé55, C. Troncon89a, M. Trottier-McDonald142,

A. Trzupek38, C. Tsarouchas9, J.C.-L. Tseng118, M. Tsiakiris105, P.V. Tsiareshka90, D. Tsionou139,

G. Tsipolitis9, V. Tsiskaridze51a,51b, E.G. Tskhadadze51a,51b, I.I. Tsukerman95, V. Tsulaia123,

J.-W. Tsung20, S. Tsuno66, D. Tsybychev148, J.M. Tuggle30, M. Turala38, D. Turecek127, I. Turk Cakir3e,

E. Turlay105, P.M. Tuts34, M.S. Twomey138, M. Tylmad146a,146b, M. Tyndel129, D. Typaldos17,

H. Tyrvainen29, E. Tzamarioudaki9, G. Tzanakos8, K. Uchida20, I. Ueda155, R. Ueno28, M. Ugland13,

M. Uhlenbrock20, M. Uhrmacher54, F. Ukegawa160, G. Unal29, D.G. Underwood5, A. Undrus24,

G. Unel163, Y. Unno66, D. Urbaniec34, E. Urkovsky153, P. Urquijo49,ar, P. Urrejola31a, G. Usai7,

M. Uslenghi119a,119b, L. Vacavant83, V. Vacek127, B. Vachon85, S. Vahsen14, C. Valderanis99,

J. Valenta125, P. Valente132a, S. Valentinetti19a,19b, S. Valkar126, E. Valladolid Gallego167a,167b,

S. Vallecorsa152, J.A. Valls Ferrer167a,167b, R. Van Berg120, H. van der Graaf105, E. van der Kraaij105,

E. van der Poel105, D. van der Ster29, B. Van Eijk105, N. van Eldik84, P. van Gemmeren5,

Z. van Kesteren105, I. van Vulpen105, W. Vandelli29, G. Vandoni29, A. Vaniachine5, P. Vankov73,

F. Vannucci78, F. Varela Rodriguez29, R. Vari132a, E.W. Varnes6, D. Varouchas14, A. Vartapetian7,

K.E. Varvell150, L. Vasilyeva94, V.I. Vassilakopoulos56, F. Vazeille33, G. Vegni89a,89b, J.J. Veillet115,

C. Vellidis8, F. Veloso124a, R. Veness29, S. Veneziano132a, A. Ventura72a,72b, D. Ventura138, S. Ventura47,

M. Venturi48, N. Venturi16, V. Vercesi119a, M. Verducci138, W. Verkerke105, J.C. Vermeulen105,

L. Vertogardov118, M.C. Vetterli142,h, I. Vichou165, T. Vickey145b,as, G.H.A. Viehhauser118, S. Viel168,

M. Villa19a,19b, E.G. Villani129, M. Villaplana Perez167a,167b, E. Vilucchi47, M.G. Vincter28, E. Vinek29,

V.B. Vinogradov65, M. Virchaux136,ax, S. Viret33, J. Virzi14, A. Vitale19a,19b, O. Vitells171, I. Vivarelli48,

F. Vives Vaque11, S. Vlachos9, M. Vlasak127, N. Vlasov20, A. Vogel20, P. Vokac127, M. Volpi11,

G. Volpini89a, H. von der Schmitt99, J. von Loeben99, H. von Radziewski48, E. von Toerne20,

V. Vorobel126, A.P. Vorobiev128, V. Vorwerk11, M. Vos167a,167b, R. Voss29, T.T. Voss174, J.H. Vossebeld73,

A.S. Vovenko128, N. Vranjes12a, M. Vranjes Milosavljevic12a, V. Vrba125, M. Vreeswijk105, T. Vu Anh81,

D. Vudragovic12a, R. Vuillermet29, I. Vukotic115, W. Wagner174, P. Wagner120, H. Wahlen174,

J. Walbersloh42, J. Walder71, R. Walker98, W. Walkowiak141, R. Wall175, P. Waller73, C. Wang44,

H. Wang172, J. Wang32d, J.C. Wang138, S.M. Wang151, A. Warburton85, C.P. Ward27, M. Warsinsky48,

R. Wastie118, P.M. Watkins17, A.T. Watson17, M.F. Watson17, G. Watts138, S. Watts82, A.T. Waugh150,

B.M. Waugh77, M. Webel48, J. Weber42, M. Weber129, M.S. Weber16, P. Weber54, A.R. Weidberg118,

J. Weingarten54, C. Weiser48, H. Wellenstein22, P.S. Wells29, M. Wen47, T. Wenaus24, S. Wendler123,

Z. Weng151,at, T. Wengler29, S. Wenig29, N. Wermes20, M. Werner48, P. Werner29, M. Werth163,

U. Werthenbach141, M. Wessels58a, K. Whalen28, S.J. Wheeler-Ellis163, S.P. Whitaker21, A. White7,

M.J. White27, S. White24, S.R. Whitehead118, D. Whiteson163, D. Whittington61, F. Wicek115,

D. Wicke81, F.J. Wickens129, W. Wiedenmann172, M. Wielers129, P. Wienemann20, C. Wiglesworth73,

L.A.M. Wiik48, A. Wildauer167a,167b, M.A. Wildt41,x, I. Wilhelm126, H.G. Wilkens29, J.Z. Will98,

E. Williams34, H.H. Williams120, W. Willis34, S. Willocq84, J.A. Wilson17, M.G. Wilson143, A. Wilson87,

I. Wingerter-Seez4, S. Winkelmann48, F. Winklmeier29, M. Wittgen143, M.W. Wolter38, H. Wolters124a,i,

B.K. Wosiek38, J. Wotschack29, M.J. Woudstra84, K. Wraight53, C. Wright53, D. Wright143, B. Wrona73,

S.L. Wu172, X. Wu49, J. Wuestenfeld42, E. Wulf34, R. Wunstorf42, B.M. Wynne45, L. Xaplanteris9,

S. Xella35, S. Xie48, Y. Xie32a, C. Xu32b, D. Xu139, G. Xu32a, N. Xu172, B. Yabsley150, M. Yamada66,

A. Yamamoto66, K. Yamamoto64, S. Yamamoto155, T. Yamamura155, J. Yamaoka44, T. Yamazaki155,

Y. Yamazaki67, Z. Yan21, H. Yang87, S. Yang118, U.K. Yang82, Y. Yang61, Y. Yang32a, Z. Yang146a,146b,

S. Yanush91, W.-M. Yao14, Y. Yao14, Y. Yasu66, J. Ye39, S. Ye24, M. Yilmaz3c, R. Yoosoofmiya123,

K. Yorita170, R. Yoshida5, C. Young143, S.P. Youssef21, D. Yu24, J. Yu7, J. Yu32c,au, J. Yuan99, L. Yuan32a,av,